

UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES

Institut Suisse de Bioinformatique

Département d’Informatique

Département de Biologie Structurale
et Bioinformatique

Professeur R.D. Appel

Institut Suisse de Bioinformatique Docteur C. Hoogland

Managing and Publishing
Proteomics Data

The Make2D-DB II Tool, an
Integrative Environment Applied

to 2-DE Datasets

THÈSE

Présentée à la Faculté des sciences de l’Université de Genève

pour obtenir le grade de Docteur ès sciences, mention bioinformatique

par

Khaled Mostaguir

de

Genève (GE)

Thèse N° 4001

GENÈVE

Atelier de reproduction de la section de physique

2008

iii

ABSTRACT

Managing and Publishing Proteomics

Data

The Make2D-DB II

Tool: an Integrative Environment

Applied to 2-DE Datasets

In a living organism, a genome generates the active entities that are responsible for

carrying out every aspect of life, the proteins. Study of these entities is a fundamental

sub-domain of molecular biology, called proteomics. Proteome analysis depends on

separation techniques to reduce the complexity of the protein mixture. Once the

proteins are separated, their properties and expressions can be compared. They can also

be broken into smaller pieces, using mass spectrometers, to weigh the resulting

fractions. One major technique to realise protein separation is through Two-

Dimensional Polyacrylamide Gel Electrophoresis (2D-PAGE). In this technique,

proteins are separated according to their masses and their charges over a two-

dimensional area. Currently, 2D-PAGE is the only technique that can be routinely

applied for parallel quantitative expression profiling of large sets of complex protein

mixtures. Gels are highly reproducible and the quantification of spots and differential

analysis are generally performed using image analysis software. Since analyses and

characterisation results cannot be of great interest without being made accessible to the

scientific community, 2D-PAGE experiments and analysis must also be reported. 2D-

PAGE datasets generally cover experiment parameters, spots properties, identification

techniques, identified proteins, specific annotations, and references to related external

resources. However, 2-DE datasets are typically limited in their content and are often

specific in their format to people that are producing them. When inspecting the many

data resources available over the Internet, we rapidly notice the degree of autonomy

and diversity of these resources when compared to each other. Besides, the majority of

these resources are isolated datasets that are often unstructured or unrefined. Problems

are ranging from the diversity of semantics, of data formats to technologies and

interfaces used to access the data. Problems of incomplete information, or worse, of

incompatibilities and conflicts between data are often encountered. Dealing with so

many disparate resources may be confusing. Navigating in many different locations and

processing query results from one resource before accessing another resource is

extremely tedious. In addition, a significant part of 2D-PAGE data is either not

available to the community, or is only published in the literature without being

electronically accessible. This underlines the necessity of offering comprehensive

solutions to manage and access 2D-PAGE data and to promote data integration

between remote datasets.

 iv

The aim of the Make2D-DB II tool, which we have developed at the Swiss Institute

of Bioinformatics, is to provide a flexible and easy-to-use distributed environment that

creates, converts, processes, publishes, maintains and interconnects 2D-PAGE datasets.

It aims at the establishment of highly reliable and easy-to-build 2-DE databases. The

tool, which is compliant with current standards, converts text reports into an evolving

and modular data representation. It is based on top of an extended, realistic and highly

consistent data model that efficiently captures all aspects of 2D-PAGE analyses and

related data. The environment ensures strong data reliability, automatic integration of

various external data, and interoperability between remote 2-DE databases. It is

designed to include as much experimental information as possible, in order to improve

the quality of the database content. In addition, Make2D-DB II is provided with a rich

query interface that is intuitive to use and that can access simultaneously any number of

remote 2D-PAGE databases. Dynamic synchronisation between remote databases

ensures that distant databases are up-to-date with regard to each others.

Make2D-DB II is a fully functional environment that can be used to build single

databases, dynamic portals and public repositories. Since its first public release in 2004,

the tool has established itself as a reference in data management, in data integration,

and in data publication of gel-based proteomics resources. It has been continuously

evolving and new releases have been made available from the renowned ExPASy

server. The environment has been adopted by a large number of academic and private

organisations, resulting in the expansion of a virtual 2-DE database with data

distributed all over the world. Many world-famous institutions are currently managing

and publishing their proteomics data using this environment.

Make2D-DB II is an open source project, which requires working constantly on the

extension of its conception and functionalities in order to stay in tune with the evolution

in proteomics techniques, data resources, and data representation. It is also necessary to

stay tuned with the ongoing recommendations from the HUPO Proteomics Standards

Initiative, which will guarantee future compatibility with other management systems

and data resources.

 v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to all the reputable members of the
Supervisory Committee for their support and encouragement to achieve the present work:

Professor Ron D. Appel
Professor Michael Dunn
Dr. Christine Hoogland
Dr. Frédérique Lisacek
Professor Christian Pellegrini

Ce travail n’aurait jamais vu le jour sans le soutien et l’aide de nombreuses personnes à qui
j’aimerais exprimer toute ma gratitude. Tout d’abord Ron AppelRon AppelRon AppelRon Appel, qui m’a donné une chance
extraordinaire de travailler dans son groupe et qui m’a permis tout au long de ces nombreuses années
de découvrir et d’apprécier ses qualités certaines en tant qu’excellent directeur, mais également, et
surtout, en tant que personne profondément humaine. Je tiens également à remercier Frédérique Frédérique Frédérique Frédérique
LisacekLisacekLisacekLisacek pour son remarquable soutien professionnel et moral, pour sa patience et sa passion et pour
avoir été toujours présente quand j’avais besoin d’elle. Je tiens également tout particulièrement à
remercier Christine HooglandChristine HooglandChristine HooglandChristine Hoogland de m’avoir assisté tout au long de ces années de travail. Pour toute la
connaissance qu’elle m’a transmise, ainsi que sa gestion et tous ses précieux conseils sans lesquels ce
travail n’aurait jamais pu voir le jour.

Many thanks to professor Michael DunnMichael DunnMichael DunnMichael Dunn and professor Christian PellegriniChristian PellegriniChristian PellegriniChristian Pellegrini for their support and
encouragements. I am greatly thankful to them for all their precious time they are giving me by
supervising my thesis, and for their advices regarding the present document.

Tous mes collègues du SIB avec qui j’ai passé de très merveilleuses années, tant sur le plan
professionnel que sur le plan de l’amitié. Leur connaissance m’a été profondément enrichissante, et
j’en garderai toujours un formidable souvenir… je les remercie tous… AmosAmosAmosAmos pour son
professionnalisme et sa passion, IvanIvanIvanIvan, KarinKarinKarinKarin et SalvoSalvoSalvoSalvo pour leur soutien technique et surtout pour leur
amitié, ClaudiaClaudiaClaudiaClaudia et VéroniqueVéroniqueVéroniqueVéronique pour leur sympathie très chaleureuse, LaureLaureLaureLaure et DolnideDolnideDolnideDolnide pour tout ce
qu’elles font pour nous, PatriciaPatriciaPatriciaPatricia et PatriciaPatriciaPatriciaPatricia qui sont de formidables collègues, MarcMarcMarcMarc pour son
agréable compagnie, DavidDavidDavidDavid, NadineNadineNadineNadine, CélineCélineCélineCéline et GrégoireGrégoireGrégoireGrégoire pour toute leur précieuse amitié, PierrePierrePierrePierre----AlainAlainAlainAlain
pour ses précieux conseils…

De nombreuses autres personnes de Swiss-Prot m’ont également été d’une aide très appréciable. Tout
particulièrement NicoleNicoleNicoleNicole, EricEricEricEric, IsabelleIsabelleIsabelleIsabelle, SandrineSandrineSandrineSandrine, AlexandreAlexandreAlexandreAlexandre, SerenellaSerenellaSerenellaSerenella et EdouardEdouardEdouardEdouard, que je remercie
sincèrement. Je remercie également tous les joueurs de tarot du SIB, des joueurs d’échecs et ceux qui
ont participé à l’équipe de football du SIB Genève… de très bons moments partagés au sein du
groupe.

Mes remerciements à MarieMarieMarieMarie----LaureLaureLaureLaure pour le formidable travail de correction et de suggestion de
l’anglais utilisé tout au long de ce document.

 vi

Finalement, toute ma reconnaissance et mes sentiments à MamanMamanMamanMaman et à NashwaNashwaNashwaNashwa, pour leur soutien et
leur amour sans fin… et à toi ElisabethElisabethElisabethElisabeth, pour tout ce que tu m’as donné et continues à me donner.

A tous, merci pour tout…

vii

A la mémoire d’un homme si extraordinaire, à Papa…

ix

RÉSUMÉ EN FRANÇAIS

Gérer et publier des données

protéomiques

L’outil Make2D-DB II : un

environnement intégratif appliqué aux

données 2-DE

Dans un organisme vivant, un génome génère des entités actives qui sont à l’origine

de tous les aspects de la vie : les protéines. L’étude de ces entités constitue un sous-

domaine fondamental de la biologie moléculaire, appelé la protéomique. L’analyse du

protéome s’effectue grâce à des techniques de séparation qui permettent de réduire la

complexité de la constitution du protéome. Une fois que les protéines sont séparées, on

peut alors comparer leurs propriétés et leur expression. Elles peuvent également être

cassées en de plus petits fragments qui peuvent être pesés au moyen de spectromètres

de masse. L’une des principales techniques de séparation des protéines est

l’électrophorèse bidimensionnelle sur gel de polyacrylamide (2D-PAGE ou 2-DE).

Dans cette technique, les protéines sont séparées en fonction de leur masse et de leur

charge sur une surface bidimensionnelle. En fait, la méthode 2D-PAGE est la seule

technique qui peut être appliquée de manière systématique pour l’expression

quantitative parallèle du profile des mélanges complexes de protéines. Les gels sont

faciles à reproduire et la quantification des spots et l’analyse différentielle sont

généralement réalisées grâce à l’utilisation de logiciels d’analyse d’images. Pour

présenter un intérêt, les résultats d’analyse et de caractérisation doivent être accessibles

à la communauté scientifique et c’est pourquoi les expériences 2D-PAGE doivent

également faire l’objet de rapports détaillés. Les données relatives à une expérience

2D-PAGE concernent généralement les paramètres expérimentaux, les propriétés des

spots, les techniques d’identification, les protéines identifiées, les annotations

spécifiques et des références à des ressources externes liées. Cependant, le contenu de

ces données est typiquement limité et leur format est souvent spécifique aux gens qui

les produisent. Lorsque l’on étudie les nombreuses sources de données disponibles sur

Internet, on s’aperçoit rapidement du degré d’autonomie et de la diversité de ces

ressources lorsqu’on les compare les unes aux autres. En outre, la majorité de ces

ressources est constituée de données isolées, souvent brutes et sans structure. Les

problèmes vont de la diversité de la sémantique, des formats de données, aux

technologies et interfaces utilisées pour y accéder. On rencontre souvent des difficultés

en raison d’informations incomplètes, ou pire encore, d’incompatibilité ou de conflits

entre les données. Avoir à faire face à tant de ressources aussi disparates peut s’avérer

compliqué. Naviguer sur de multiples sites et devoir traiter les résultats d’une requête

provenant d’une source avant de pouvoir accéder à une nouvelle source est

extrêmement fastidieux. De plus, une part importante des données 2D-PAGE est

inaccessible à la communauté ou bien est seulement publiée dans un format papier et

 x

donc électroniquement inaccessible. Tous ces éléments mettent en évidence la nécessité

d’offrir des solutions complètes permettant de gérer et d’accéder aux données 2D-

PAGE et de promouvoir l’intégration des données entre les différentes bases de

données distantes. Le but de l’outil Make2D-DB II que nous avons développé au sein

de l’Institut suisse de bioinformatique consiste à fournir un environnement flexible et

facile à utiliser qui crée, convertit, traite, publie, entretient et interconnecte des bases de

données 2D-PAGE. Il vise à créer des bases de données fiables et faciles à construire.

Cet outil, conforme aux normes de standardisation actuelles, convertit de simples

rapports écrits en une représentation de données évolutive et modulaire. Il repose sur un

modèle de données étendu, réaliste et hautement cohérent qui saisit de manière efficace

tous les aspects des analyses 2D-PAGE et des données liées. L’environnement garantit

une haute fiabilité des données, l’intégration automatique de diverses données externes

et une interopérabilité entre les bases de données distantes. Il présente une interface de

requête d’utilisation intuitive et qui peut accéder simultanément à un nombre illimité de

bases de données 2D-PAGE distantes. Une synchronisation dynamique entre les bases

de données garantit que les bases de données distantes sont à jour les unes par rapport

aux autres.

Made2D-DB II est un environnement totalement fonctionnel. Depuis son premier

lancement public en 2004, l’outil s’est positionné comme une référence en matière de

gestion de données, d’intégration de données et de publication de ressources

protéomiques d’électrophorèse bidimensionnelle. Il a continuellement évolué et il est

possible d’accéder aux nouvelles versions à partir du serveur ExPASy. Notre

environnement a été adopté par un grand nombre d’organisations académiques et

privées qui ont créé et contribué à l’expansion d’une base de donnée 2D-PAGE

virtuelle, avec des données distribuées partout dans le monde.

Make2D-DB II est un projet open source qui requiert un travail permanent pour l’extension
de sa conception et de ses fonctionnalités afin de répondre à l’évolution que connaissent
les techniques protéomiques, les ressources et la représentation des données. Il est
également nécessaire qu’il demeure conforme aux recommandations de l’HUPO
(Proteomics Standards Initiative) qui garantissent sa future comptabilité avec d’autres
systèmes de gestion de données et d’autres sources de données.

Organisation de ce document

Ce document décrit les concepts qui sous-tendent Make2D-DB II, son

développement et son environnement intégratif. Le chapitre A est une introduction en

matière. Le chapitre B donne un aperçu des trois sous-catégories fondamentales de la

biologie moléculaire que sont : la génomique, la transcriptomique et la protéomiques. Il

décrit ensuite la protéomique et les techniques en matière de séparation de protéines,

leur caractérisation et leur identification. Ce chapitre est principalement consacré aux

méthodes 2D-PAGE et aux analyses liées. Le chapitre C dépeint la grande diversité des

données trouvées dans les plus importantes ressources en matière de classification et de

caractérisation des protéines en lien avec notre travail. Les aspects techniques liés à la

structure des données et leur gestion sont présentés dans le chapitre D qui fait

également état des principales approches en matières d’intégration de données dans les

sciences de la vie. Certains systèmes d’intégration de données connus sont examinés à

 xi

la fin de ce chapitre. Le chapitre E explique les raisons qui nous ont conduit à

conceptualiser et développer Make2D-DB II. Ce chapitre examine méticuleusement

tous les détails du modèle de données qui constitue l’élément central de cet outil. La

mise en œuvre de Make2D-DB II et son environnement intégratif sont révélés dans le

chapitre F. Ce dernier décrit le fonctionnement physique de l’outil, l’interconnexion

entre les systèmes distribués et l’intégration des données. Le fonctionnement des

interfaces Web et la manière dont les données sont échangées entre les installations

distantes sont les thèmes abordés dans le chapitre G. Le chapitre H évalue la

contribution de Make2D-DB II dans la création d’une base de donnée virtuelle

consacrée aux données de l’électrophorèse bidimensionnelle. De nombreuses bases de

données construites au moyen de notre outil sont énumérées dans ce chapitre. Les deux

derniers chapitres, H et I, présentent les principales perspectives d’avenir à court et

long termes de l’outil. Le manuscrit se referme en traitant de la place de l’intégration

des données dans la biologie moléculaire dans un proche avenir.

xiii

CHAPTERS

Chapter A. Introduction and Motivation 1

Chapter B. Proteomics: Definition and Techniques 7

Chapter C. Proteomics Data Resources 25

Chapter D. Data Management and Integration 51

Chapter E. The Make2D-DB II Environment - The Concepts 73

Chapter F. Make2D-DB II Environment: Components and

Implementation 155

Chapter G. Make2D-DB II Web Servers 195

Chapter H. Achievements and Technical Perspectives 223

Chapter I. Conclusion 237

Bibliography 241

Appendix I. The genetic material I

Appendix II. Mass spectrometry VII

Appendix III. A survey on the development of a proteomics data

integration system XIII

Appendix IV. UML XVII

Appendix V. Relational databases XXXIII

Appendix VI. The installation process XLI

 xiv

xv

TABLE OF CONTENTS

Chapter A. Introduction and Motivation 1

A.I. Managing data in bioinformatics 2

A.II. Proteomics data and 2-DE datasets 3

A.III. What is the Make2D-DB II package 4

A.IV. Achievements 5

A.V. Organisation of this document 6

Chapter B. Proteomics: Definition and Techniques 7

B.I. Genomics, transcriptomics and proteomics 8
B.I.1 Genomics 8

B.I.2 Transcriptomics 9

B.I.3 Proteomics 10

B.I.4 “Omics” 11

B.II. Protein characterisation in proteomics 12
B.II.1 Sample preparation and isolation of proteins 13

B.II.2 Protein separation using 2-D electrophoresis 13

B.II.3 Protein cleavage and ionisation for mass spectrometry 14

B.II.4 Mass spectrometry 15

B.II.5 Other separation and identification techniques 16

B.III. 2-Dimensional polyacrylamide gel electrophoresis (2D-PAGE) 18
B.III.1 Separation techniques 18

B.III.2 Gel-Informatics 22

B.IV. Accessing proteomics data 23

Chapter C. Proteomics Data Resources 25

C.I. Introduction 26

C.II. Protein sequence resources 26
C.II.1 UniProtKB/Swiss-Prot 27

C.II.2 UniProtKB/TrEMBL 28

C.II.3 PIR-PSD 29

C.II.4 UniProtKB: The Universal Protein database 29

C.II.5 Some notes on major nucleotide sequence databases 29

C.II.6 NCBI sequence repositories 31

C.II.7 Organism-specific protein sequences 31

 xvi

C.III. Other categories 31
Protein classification 32

Metabolic and enzyme databases 32

Pattern and profiling databases 32

Molecular interaction databases 33

Immunohistochemistry 33

C.IV. 2D-PAGE (2-DE) datasets 34
C.IV.1 Many 2-DE datasets are in loose formats 34

C.IV.2 The early federation approach 34

C.IV.3 SWISS-2DPAGE 35

General facts 35

At the core of our development 36

An entry description 37

Comment on the flat file entries 40

C.IV.4 Similar federated SWISS-2DPAGE-Like databases 41

C.IV.5 Other important federated 2-DE databases 42

C.IV.6 Not entirely federated databases 44

C.IV.7 Many unavailable datasets 46

C.IV.8 Semantic control and standards 46

C.V. Mass spectrometry 47
C.V.1 Towards a standardised storage and exchange formats 47

C.V.2 Repositories 47

C.VI. So many data resources… what is that good for? 49

Chapter D. Data Management and Integration 51

D.I. The nature of biological data resources 52
D.I.1 Managing data in bioinformatics 52

D.I.2 Data Structure 54

Unstructured data 54

Structured data 54

Semi-structured data 55

D.II. Three main approaches in designing data integration systems 57
D.II.1 The warehouse approach 58

D.II.2 The mediator approach 58

D.II.3 The federated systems 59

D.II.4 What to consider 60

D.II.5 The query plan 61

D.III. On the particularities of the data warehouse approach 63

D.IV. On the particularities of the mediator approach 64
D.IV.1 Modelling and Views in a mediator approach 64

D.IV.2 Some semantics 64

D.IV.3 LAV, GAV and GLAV 64

D.V. Comments on the three different integrative approaches 65

D.VI. Examples of data management and integration systems 66

 xvii

Chapter E. The Make2D-DB II Environment - The Concepts 73

E.I. Introduction 74
E.I.1 Databases and data models 74

E.I.2 The EBP project: interconnecting remote databases 75

E.I.3 Further developments 75

An integrative virtual 2-DE database 75

Model extension and 2-DE Portals 76

E.II. Objectives, constraints and initial choices 76

E.III. Unified Modeling Language and Object-Relational Databases 79
The Unified Modeling Language 79

The Object-Relational Database Management System 79

E.IV. The central Make2D-DB II data model and its implementation 80
E.IV.1 URL addresses to access a specific schema implementation 81

E.IV.2 More of a physical data model than a logical data model 81

E.V. The main constituents of the data model 85
E.V.1 Schematic classification 85

E.V.2 Projects, biosources and samples 88

E.V.3 Analytes, separation techniques (2-DE) and gel related data 94

E.V.4 Spots: identity and physical properties 102

E.V.5 Identifications 104

The predefined identification subsystems 107

User-defined identification methods and free text annotations 115

E.V.6 The protein annotations and related classes 121

E.V.7 Cross-references’ management 134

E.V.8 External general and 2-DE data 137

E.V.9 Bibliographic references 141

E.V.10 Materialised views and related operations 145

E.V.11 Batch operations – An example 148

E.V.12 Additional ontology and controlled vocabularies 149

E.V.13 Metadata and technical records 150

E.VI. Implementing a working system out of the concepts 154

Chapter F. Make2D-DB II Environment: Components and

Implementation 155

F.I. The complete image 156

F.II. The Make2D-DB II distributed package 158
F.II.1 Installation process 158

Prerequisites 158

Overview of the tool’s options 158

F.II.2 Data preparation: formats and annotations 160

Preparing the data 160

Maps and their annotations 161

The spot and the protein annotations 162

The flat file mode 163

The spreadsheet mode 164

 xviii

The Melanie / ImageMaster
TM
 2D Platinum XML exports 166

Comments on annotations 167

F.II.3 The configuration files 167

The main configuration file: include.cfg 168

The server configuration file: 2d_include.pl 168

The basic configuration file: basic_include.pl 169

F.II.4 The Data Analyser and Converter 170

F.II.5 The relational implementation 176

Three possible options 176

The RDBMS implementer 177

F.II.6 Installation of the Web server components 182

Connection between a Web server and a relational database 183

Configuration for a Web server process 187

Running the Make2D-DB II server process 188

F.III. The central data integration mediator 189
Reinforcing the federated approach using a central mediator 189

Two main components: the file extractor and the data mediator 190

The file extractor 191

The mediator 191

F.IV. The package content 192

Chapter G. Make2D-DB II Web Servers 195

G.I. Introduction 196

G.II. Overview of the Web components and their interactions 197
Accessing the Web server’s main entry 198

G.III. The main interface 199
G.III.1 The interactive mode 199

Search menu 201

Map access 205

Container for unidentified spots 206

Databases’ selection area 206

G.III.2 Referencing or extracting data in the non-interactive mode 207

Logical and physical URLs 208

Data exchange 211

G.IV. Data viewers 212

G.V. The administration interface 215
G.V.1 The search options 216

G.V.2 The administration commands 216

Managing views, statistics and subtitles 217

Managing external data 218

Update entry versions / Annotate and publish a database release 219

Export and backup data 219

Hide/show data 219

Clean database 219

G.V.3 Performance of the administration interface 220

 xix

G.VI. Extending the Web interfaces 220

Chapter H. Achievements and Technical Perspectives 223

H.I. Characteristics of the Make2D-DB II environment 224

H.II. History of the package releases 224

H.III. Available Make2D-DB II resources 226
H.III.1 Remote Make2D-DB II databases 226

H.III.2 World-2DPAGE Portal 228

H.III.3 World-2DPAGE Repository 229

H.III.4 Grouping 2-DE resources: The World-2DPAGE Constellation 231

H.IV. Perspectives 232
H.IV.1 Short-term perspectives 232

H.IV.2 Long-term perspectives 234

Chapter I. Conclusion 237

I.I. Discussion 238

I.II. What to expect next? 239

Appendix I. The genetic material I

The genetic material I
DNA and RNA I

Proteins II

Alternative splicing VI

Appendix II. Mass spectrometry VII

Appendix III. A survey on the development of a proteomics data

integration system XIII
The specification and requirements XIII

Converting the specifications into a technical representation XIV

The development process XIV

Deployment and Evaluation XIV

The evaluation criteria XV

Appendix IV. UML XVII

Definition XVII

Object-orientation concepts and related UML elements XVIII
Objects and Classes XVIII

Modelling with object-oriented concepts XX

Diagrams XXVI
Class, object and package Diagrams XXVI

 xx

Use Case Diagram XXVII

Component Diagram XXVIII

Deployment Diagram XXX

Activity Diagram XXX

Appendix V. Relational databases XXXIII

Relational databases XXXIII

Components XXXIV
Relations or tables XXXIV

Constraints XXXIV

Rules, stored procedures and triggers XXXVI

Indexes and sequences XXXVI

PostgreSQL XXXVII

Appendix VI. The installation process XLI

 xxi

LIST OF FIGURES

Figure A.I-1: Information-driven discovery (Chung, Wooley 2003)......................... 3
Figure B.II-1: Protein characterisation - example of a workflow (Wilke et al.

2003). ... 12
Figure B.II-2: Schematic representation of 2D-PAGE protocol. 14
Figure B.II-3: An illustration of a two-dimensional LC installation. 17
Figure B.III-1: A caption of a stained 2-DE gel where the proteins are distinctively

separated in the two dimensions. ... 19
Figure B.III-2: A SDS-PAGE apparatus (left) producing a one dimensional SDS

strip (right). .. 21
Figure B.III-3: 2-D DIGE technology.. 22
Figure B.III-4: Melanie / ImageMasterTM 2D Platinum, an example of a 2-DE

image software performing gel matching and statistical analysis. 23
Figure D.II-1: Interaction between the integrator schema and the data sources. . 60
Figure D.II-2: The TAMBIS system architecture – processing a query into the

query plan (Stevens et al. 2000).. 63
Figure E.IV-1: Example of a concurrent association. ... 83
Figure E.V-1: Main constituents of the Data Model.. 86
Figure E.V-2: Data Model - Projects, Biosources and Samples. 89
Figure E.V-3: Data Model – The Organism class. ... 91
Figure E.V-4: Data Model - Tissue and Swiss-Prot tissue classes............................ 93
Figure E.V-5: Data Model – The analytes mechanism.. 94
Figure E.V-6: Some examples of fractioning or combining analytes. 95
Figure E.V-7: Data Model – The 2-DE classes. .. 96
Figure E.V-8: Data Model – The gel class... 97
Figure E.V-9: Data Model – The gel protocols... 99
Figure E.V-10: Data Model – The gel image. ... 100
Figure E.V-11: Data Model – Relating the Gel class to the Entry class................ 101
Figure E.V-12: Data Model – The spot identity. .. 102
Figure E.V-13: Data Model – Identification data and annotations (simplified). . 104
Figure E.V-14: Data Model – Identification data and annotations (details) 106
Figure E.V-15: Data Model – The SpotEntry association class and the 2D

comments. ... 107
Figure E.V-16: Data Model –Subsystems of the predefined identification methods.

.. 108
Figure E.V-17: Data Model – Parent superclasses of the identification subsystems.

.. 110
Figure E.V-18: Data Model – SpotData as an association class between Spot and

Experiement. .. 112
Figure E.V-19: Data Model – Amino acid composition subclasses........................ 112
Figure E.V-20: Data Model – Peptide Finger Printing subclasses. 113
Figure E.V-21: Data Model – Tandem MS subclasses. ... 114

 xxii

Figure E.V-22: Data Model – Generic identification technique subclasses (Other).
.. 115

Figure E.V-23: Data Model – The spot annotation general topics. 116
Figure E.V-24: Data Model – spot general and mapping annotations.................. 119
Figure E.V-25: Data Model – The protein Entry class.. 123
Figure E.V-26: Data Model – The entry comments... 125
Figure E.V-27: Data Model – The Gene Subsystem.. 127
Figure E.V-28: Data Model – The gene ontology classification. 128
Figure E.V-29: Data Model – Bibliographic references for Entry. 130
Figure E.V-30: Data Model – The entry version management. 131
Figure E.V-31: Data Model – Archiving modified entries...................................... 132
Figure E.V-32: Data Model – Cross-references of protein entries. 133
Figure E.V-33: Data Model – The Cross-reference database classes. 135
Figure E.V-34: The mechanism of integrating and managing cross-reference

metadata.. 136
Figure E.V-35: Data Model – The main index / UniProtKB protein annotations.

.. 138
Figure E.V-36: Information about the remote Make2D-DB II interfaces /

databases. .. 139
Figure E.V-37: Information about gels on remote databases................................. 140
Figure E.V-38: Data Model – Computed location of a protein on remote maps. 140
Figure E.V-39: Data Model – The Bibliographic References package. 141
Figure E.V-40: Data Model – The People subsystem. ... 143
Figure E.V-41: The Data Model – The Reference location subsystem. 144
Figure E.V-42: The referenced objects subsystem. ... 145
Figure E.V-43: The materialised views components (the protein perspective).... 146
Figure E.V-44: The materialised views components (the map perspective)......... 147
Figure E.V-45: The global update, an example of batch operations. 149
Figure E.V-46: The Database common class. ... 152
Figure E.V-47: Make2D-DB II tool information class. ... 153
Figure F.I-1: The Make2D-DB II environment. .. 156
Figure F.I-2: Details of the Make2D-DB II environment. 157
Figure F.II-1: Installing the Make2D-DB II distributed package. 160
Figure F.II-2: Data analyser and converter - the <check> option. 171
Figure F.II-3: Data analyser and converter – Integrating data from external

resources. .. 173
Figure F.II-4: The relational implementation of a local database. 178
Figure F.II-5: Web servers connecting to various databases via TCP/IP

connections.. 184
Figure F.II-6: Web servers connecting amid themselves via HTTP (REST)

connections.. 185
Figure F.II-7: Preventing cyclic loops in extended networks. 186
Figure F.III-1: The central data integration mediator and file extractor on

ExPASy. .. 190
Figure G.II-1: Schematic overview of Web servers’ components and interactions.

.. 197
Figure G.III-1: Home page of the main interface (Test-2DPAGE). 200
Figure G.III-2: A protein entry in the ‘Nice view’ format – displaying various

sections. ... 202

 xxiii

Figure G.III-3: The ‘search by combined fields’ interface – A SRS-like search
engine... 204

Figure G.III-4: Map’s experimental information.. 205
Figure G.III-5: Querying several remote Make2D-DB II Web servers at once. . 207
Figure G.IV-1: The map navigator (A) and the spot displayer (B). 213
Figure G.IV-2: The mass spectrometry browser. .. 215
Figure G.V-1: The administration interface main page (the administration

commands).. 217
Figure H.III-1: World-2DPAGE Portal. ... 229
Figure H.III-2: World-2DPAGE Repository.. 231

 xxiv

LIST OF TABLES

Table C.II-1: A UniProtKB/Swiss-Prot protein entry, <P22222>, in raw text
format. ... 28

Table C.II-2: Entry <M60826> from the EMBL database....................................... 30
Table C.IV-1: Identification methods distribution on SWISS-2DPAGE 36
Table C.IV-2: SWISS-2DPAGE entry <P0AB71>, previously <P11604>, release

18.3... 37
Table C.IV-3: SWISS-2DPAGE entry <P11604>, release 17.0 / March 2004. 40
Table C.IV-4: Examples of federated 2-DE databases built with the former

Make2ddb tool. .. 42
Table D.VI-1: A non-exhaustive list of general data integration systems............... 68
Table D.VI-2: A non-exhaustive list of gel-specific data management and

integration systems. ... 70
Table E.V-1: Examples of user-defined 2-DE topics. .. 116
Table E.V-2: Some annotations randomly chosen from SWISS-2DPAGE.......... 117
Table E.V-3: Mapping topic definitions currently in use by SWISS-2DPAGE... 120
Table F.II-1: An example on an annotated Make2D-DB II flat file. 164
Table F.II-2: An example of annotations in Make2D-DB II spreadsheet mode. . 166
Table F.II-3: A sample of user-addressed messages during the conversion process.

.. 175
Table G.III-1: Representative examples of logical URLs’ formulation. 209
Table H.II-1: Make2D-DB II public releases. .. 226
Table H.III-1: Some public 2-DE databases built with Make2D-DB II................ 227

 xxv

GLOSSARY

AJAX: AJAX (Asynchronous JavaScript and XML) is a group of inter-related web

development techniques used for creating interactive web applications. A primary

characteristic is the increased responsiveness and interactivity of web pages achieved by

exchanging small amounts of data with the server. This is intended to increase the web

page's interactivity, speed and functionality.

API: An Application Programming Interface is a source code interface that a computer

system or program library provides to support requests for services to be made.

BLOB: Binary Large Objects are binary data stored as a single entity in a database
management system. BLOBs are typically images, audio or other multimedia objects.

Bottom-up approach: The individual base elements of the system are first specified in detail.

These elements are then linked together to form larger subsystems until a complete top-

level system is formed. The beginnings are small, but eventually grow in complexity and

completeness. However, elements and subsystems are developed in isolation, and are

subject to local optimisation as opposed to meeting a global purpose.

CSS: Cascading Style Sheets. CSS is a style language used to describe the presentation of a
document written in a markup language. Its most common application is to style web pages

written in HTML and XHTML. It is designed primarily to enable the separation of

document content from document presentation.

CVS: The Concurrent Versions System (CVS) is an open-source version control system that

keeps track of all work and all changes in a set of files, typically the implementation of a

software project, and allows collaboration. CVS has become popular in the open source

software world.

CORBA: The Common Object Request Broker Architecture (CORBA) is a standard defined

by the Object Management Group (OMG) that enables software components written in

multiple computer languages and running on multiple computers to work together.

Garbage collection: The automatic detection and freeing of memory or storage areas that are

no longer in use.

Gel electrophoresis: Gel electrophoresis is a widely used technique for separating
electrically charged molecules. It is a central technique in proteomics to separate and purify

proteins, so they can be studied individually. Gel electrophoresis is often followed by

staining or blotting procedures followed by various protein identification techniques.

Hierarchy: A classification of relationships in which each item except the top one (known as

the root) is a specialised form of the item above it. Each item can have one or more items

below it in the hierarchy.

 xxvi

HTTP: Hyper Text Transfer Protocol. The Internet protocol, based on TCP/IP, used to fetch
hypertext objects from remote hosts.

Instance: A class represents a set or collection of objects called instances. Each instance must

be uniquely identifiable and distinct from all other instances.

IUBMB: International Union of Biochemistry and Molecular Biology.

MVC: The Model-View-Controller (MVC) is a design pattern for the architecture of complex

web applications. It is a widely adopted pattern, across many languages and implementation

frameworks, whose purpose is to achieve a clean separation between three main

components in most web applications: the model (business logic and processing), the view

(user interface and data presentation) and the controller (control of the separation between

the model and the view). MVC ensures that changes to the user interface do not affect data

handling, and that the data can be reorganized without changing the user interface.

Ontology: "An ontology is an explicit specification of some topic. It is a formal and

declarative representation, which includes the vocabulary for referring to the terms in that

subject area and the logical statements that describe what the terms are, how they are related

to each other, and how they can or cannot be related to each other. Ontologies therefore

provide a vocabulary for representing and communicating knowledge about some topic and

a set of relationships that hold among the terms in that vocabulary".

ORDBMS: Object-Relational Database Management System. This system simply puts an

object oriented front end on a relational database (cf. RDBMS).

Portal: cf. Web portal.

Protein: A large molecule composed of one or more chains of amino acids in a specific order

determined by the base sequence of nucleotides in the DNA coding for the protein. Proteins

are required for the structure, function, and regulation of the body's cells, tissues, and

organs.

Proteomics: “Proteomics aims at quantifying the expression levels of the complete protein

complement (the proteome) in a cell at any given time. While proteomics research was

initially focussed on two-dimensional gel electrophoresis for protein separation and

identification, proteomics now refers to any procedure that characterises the function of

large sets of proteins. It is thus often used as a synonym for functional genomics.”

RDBMS: Relational Database Management System. A type of database management system

that stores data in the form of related tables.

REST: Representational State Transfer (REST) refers to a collection of network architecture
principles that outline how resources are defined and addressed. The term is often used in a

looser sense to describe any simple interface that transmits domain specific data over HTTP

without an additional messaging layer such as SOAP. An important concept in REST is the

existence of resources, each of which can be referred to using a global identifier (a URI). In

order to manipulate these resources, components of the network (clients and servers)

communicate via a standardized interface (e.g., HTTP) and exchange representations of

these resources.

 xxvii

RSS: Really Simple Syndication (RSS) is a family of Web feed formats used to publish

frequently updated content. RSS makes it possible for people to keep up with Web sites

content in an automated manner that can be transmitted to special programs or filtered

displays.

Rule (RDBMS): Rules in a database offer a way to rewrite some specific SQL queries, or to

automatically add some additional SQL instructions to an initial one.

Relational model: The relational model for database management is a database model based

on predicate logic and set theory.

Semi-structured: The semi-structured model is a database model. In this model, there is no

separation between the data and the schema, and the amount of structure used depends on

the purpose. It provides a flexible format for data exchange and viewing. While the schema

can be easily modified, a semi-structure model may suffer significantly in consistency and

constraints’ definition.

Sequence (RDBMS): Sequences are special tables used for generating integer sequences.
Typically, they are used to create a unique record ID (or key) for each row in a table.

SOAP: The Simple Object Access Protocol (SOAP) is a protocol for exchanging XML-based

messages over computer networks, normally using HTTP/HTTPS. SOAP forms the

foundation layer of the web services protocol stack providing a basic messaging framework

upon which abstract layers can be built.

TCP/IP: Transmission Control Protocol based on IP. This is an Internet protocol that

provides for the reliable delivery of streams of data from one host to another.

Timeout: A network parameter related to an enforced event designed to occur at the

conclusion of a predetermined elapsed time. Typically, related to HTTP connection

termination.

Top-Down approach: An overview of the system is first formulated, specifying but not

detailing first-level subsystems. Each subsystem is then refined in more details until the

entire specification is reduced to base elements. A top-down model is often specified with

the assistance of "black boxes". However, black boxes may fail to elucidate elementary

mechanisms or be detailed enough to realistically validate the model.

Trigger (RDBMS): Triggers are activation processes that are associated with some function

or procedure and that are “fired” before or after a specific operation is attempted on a row.

Two-D PAGE / 2D-PAGE / 2-DE: Two-dimensional polyacrylamide gel electrophoresis, cf.

Gel electrophoresis.

URI: A Uniform Resource Identifier is a string of characters used to identify or name a

resource. The identifier enables interaction with representations of the resource over a

network, typically the World Wide Web, using specific protocols (usually HTTP for Web

access).

URL: A Uniform Resource Locator is a standard for writing a text reference to an arbitrary

piece of data in the World Wide Web. Logical URLs are descriptive (self-explanatory)
locators, as opposed to physical URLs, which reflect the architecture of a directory tree.

 xxviii

Vertices: Sing. vertex, are the fundamental units or nodes out of which graphs are formed.

Vertices are the indivisible objects that are connected by edges or arcs in a graph.

Web portal: A web portal is a site that functions as a point of access to information on the

World Wide Web. Portals present information from diverse sources in a unified way,

providing a pathway to other content. A Web portal is designed to use distributed

applications, different numbers and types of middleware and hardware to provide services

from a number of different sources.

Web service: A Web service is a software system designed to support interoperable machine-

to-machine interaction over a network. Web services are frequently Web APIs that can be

accessed over a network, and executed on a remote system hosting the requested services.

Commonly, the term refers to clients and servers that communicate using XML messages

that follow the SOAP standard. It is assumed that there is also a machine-readable

description of the operations supported by the server written in the Web Services

Description Language (WSDL).

Wrapper: A wrapper in computer science is a piece of code that allows classes to work

together that normally would not due to interfacing incompatibility. The wrapper acts as an

interface between its caller and the wrapped code. This may be done, for example, if the

wrapped code is in a different programming language.

XML: The Extensible Markup Language (XML) is a general-purpose specification for

creating custom markup languages. It is classified as an extensible language since it allows

its users to define their own elements. Its primary purpose is to facilitate the sharing of

structured data across different information systems, particularly via the Web, and it is used

both to encode documents and to serialize data.

 xxix

COMMONLY USED ABBREVIATIONS

2D-PAGE: Two-Dimensional Polyacrylamide Gel Electrophoresis.

API: Application Programming Interface.

CSS: Cascading Style Sheets.

CVS: Concurrent Versions System.

EMBL: European Molecular Biology Laboratory.

GUI: Graphical User Interface.

HTTP: Hyper Text Transfer Protocol

HUPO: Human Proteome Organisation.

IUBMB: International Union of Biochemistry and Molecular Biology.

LIMS: Laboratory Information Management System.

NCBI: National Center for Biotechnology Information.

ORDBMS: Object-Relational Database Management System.

PSI: Proteomics Standards Initiative.

RDBMS: Relational Database Management System.

REST: Representational State Transfer.

SIB: Swiss Institute of Bioinformatics.

SOAP: Simple Object Access Protocol.

TCP/IP: Transmission Control Protocol based on IP.

URI: Uniform Resource Identifier.

URL: Uniform Resource Locator.

1

C h a p t e r ����

CHAPTER A. INTRODUCTION AND MOTIVATION

Managing scientific data nowadays is a crucial task in proteomics and, more

generally speaking, in all life science fields. Over the last two decades, there has
been a real outburst of data, which still goes on in every biomolecular domain.

As a result, many scientists have become or relabelled themselves
bioinformaticians, rather than simply geneticists, biologists, or computer
scientists. Bioinformatics extends over many interrelated areas of biology,

computer science and information technology to merge them into one single
discipline. This covers almost the entire domain of biology, combined with data
organisation, management and storage, data analysis, mathematics, statistics,

detection algorithms, modelling and data representation, data mining,
linguistics, physics, chemistry, and, of course, every related computer science
development required for the design and the implementation of all related tools.

CChhaapptteerr AA.. IInnttrroodduuccttiioonn aanndd MMoottiivvaattiioonn

 2

A.I. Managing data in bioinformatics

A suitable definition of bioinformatics, a moderately new discipline, is stated in the

following terms:

“Bioinformatics is the field of science in which biology, computer science, and

information technology merge to form a single discipline. The ultimate goal of the field

is to enable the discovery of new biological insights as well as to create a global

perspective from which unifying principles in biology can be discerned.”
1

Important sub-disciplines of bioinformatics are
2
:

� The analysis and interpretation of different types of data (e.g., nucleotide and

amino acid sequences, protein structure, protein domains, etc).

� The development of algorithms and statistics to assess relationships among

members of large datasets.

� The development and implementation of tools to access and manage the

heterogeneous types of information.

The driving force in biological discovery today relies on the transformation of the

multitude of heterogeneous, vast, and complex data on hand into useful organised

information, with the ultimate goal to converge this organised information into a

systematised knowledge. A representative information-driven discovery process is

illustrated in Figure A.I-1 (Chung, Wooley 2003). This figures shows how

experimentally generated data must be combined with data derived from other

resources using computational data analysis models for a better global interpretation.

Data organisation and infrastructure, together with advances in experimental methods,

should lead to a better understanding of life science domains.

1 NCBI, “Just the Facts: A Basic Introduction to the Science Underlying NCBI Resources.” (November 2002)

2 http://www.epa.gov/comptox/glossary.html

AA..IIII.. PPrrootteeoommiiccss ddaattaa aanndd 22--DDEE ddaattaasseettss

 3

D a ta b a se s

A n a ly s is

T o o ls

G en om ic s
S eq u en c e ,

G en e

D e tec tio n ,

C om p a r is o n

D a ta b a se s

A n a ly s is

T o o ls

T ra n sc r ip t -
om ic s

M ic ro a r ra y

e x p e r im en ts

D a ta b a se s

A n a ly s is

T o o ls

P ro te om ic s
S eq u en c e ,

E xp r e s s io n ,

S tru c tu re ,

F u n c tio n ,

In te ra c tio n s

S y s tem s
B io lo g y

R egu la to ry

n e tw o rk ,

M e ta b o lic

a n d P ro te in

P a thw a ys

Figure A.I-1: Information-driven discovery (Chung, Wooley 2003).

A.II. Proteomics data and 2-DE datasets

The objective of genomics and all related disciplines is to endorse our understanding

of the function and evolution of the genomes of living systems. This understanding

allows us to formulate problems and to face challenges in life science, medicine and

related domains. In a living organism, a genome generates the active entities that are

responsible for carrying out every aspect of life, the proteins. Study of these entities

and their interactions is a fundamental and vast sub-domain of molecular biology,

called proteomics. As it is the case for many other sciences, experimental data and

related analysis are central for the study and elucidation of the considered domain.

Molecular biology data resources

At the present time, hundreds of different molecular biology data resources are

publicly available all over the Internet. The content of those databases varies greatly

and spreads over the many disciplines and sub-disciplines of life science fields. The

Journal of Nucleic Acid Research (Galperin 2007) publishes each year a fairly

extended collection of biological resources “that are freely available

to the public and

may be useful to the molecular biologist”. The 2007 update includes already 968 public

data resources. It is significant that this number has tripled since 2002 and that between

2006 and 2007 only, some 110 additional data resources have made their appearance in

the list.

In the present document, the term “resources” will be conventionally used to

designate databases or datasets (structured data), as well as any collection of less

CChhaapptteerr AA.. IInnttrroodduuccttiioonn aanndd MMoottiivvaattiioonn

 4

structured data that presents sequential and organised records. Only academic and

publicly available data will be highlighted.

Proteome analysis and 2-DE resources

Proteome analysis depends on separation techniques to reduce

the complexity of the

protein mixture. A proteome generally contains hundreds of thousands of proteins. It is

therefore essential to separate and organise those different types of proteins.

One major technique to realise this separation is through 2-Dimensional
Polyacrylamide Gel Electrophoresis (2-DE or 2D-PAGE) (O'Farrel 1975; Gorg et al.
2000). Since proteins differ from each other in terms of mass and charge, it is possible

to separate them according to both properties over a two-dimensional area, a gel, using

gel electrophoresis techniques. Data regarding the 2-DE separation procedure and the

protein identification methods and results is typically reported in disparate resources. 2-

DE resources are usually limited in their contents and are often specific in their formats

to people and laboratories that are producing them.

One of our main concerns was the amount of 2-DE resources that are generated by

numerous laboratories without being made available to the proteomics community. A

large number of isolated 2-DE datasets is produced in many different formats, ranging

from highly structured formats to plain text reports, and with dissimilar levels of

annotations. Besides, a significant part of this data is either not available to the

community, or is only published in the literature without being electronically

accessible.

Even when access to these resources is possible, researchers may still be confused.

Navigating in many different locations and processing query results from one resource

before accessing another resource is a tedious task. This underscores the need to

propose comprehensive and intelligent integration solutions to uniformly access such

types of resources.

A.III. What is the Make2D-DB II package

Managing and publishing 2-DE resources exhaustively and efficiently was the

challenge we tried to take up when we started to conceive our project. We wanted to

provide researchers with the necessary tools to manage and publish their data. The fact

that the same management system would be shared between remote databases directed

our work towards the conception of a large-scale environment: a federated environment

in which 2-DE resources are distributed while still being able to interact and exchange

data.

AA..IIVV.. AAcchhiieevveemmeennttss

 5

From the “Make2D-DB II” tool site
1
, an environment that was initially announced in

2003 (Mostaguir et al. 2003), a short and non-technical description is put forward to the

tool users:

“Make2D-DB II is… [an environment] to create, convert, publish, interconnect and

keep up-to-date 2-DE databases. Being open source, it is distributed (…) free of

charge.

With this tool, one can easily convert any existing personal federated 2-DE database

(including databases built with the first Make2ddb package or following the SWISS-

2DPAGE conventions) into a more reliable format. The tool also handles XML exports

from Melanie / ImageMaster
TM
 2D Platinum, common spreadsheets (e.g., Excel / CSV

reports) as well as simple text lists. It is also possible to create new relational

databases from scratch. It runs on most UNIX-based operating systems (Linux,

Solaris/SunOS, IRIX). Being continuously developed, the tool is evolving in concert

with the current Proteomics Standards Initiative of the Human Proteome Organisation

(HUPO).

Make2D-DB II is designed to ensure high consistency of data. It allows dynamic

interconnection between any number of similar remote databases and offers many

other features, including automatic data updates related to external data, dynamic

cross-references to similar databases, intuitive search engine and data visualisation

combined with exports in various formats.

In addition, the data model extends the concept of 2-DE databases to cover a more

elaborate description of proteomic experiments and analysis. Currently, it can

integrate various annotation documents (e.g., sample and gel preparation), as well as

many common analysis file formats (e.g., common mass spectrometry formats, mzData,

etc.). References to other remote repositories can also be easily integrated (e.g.,

PRIDE for MS/MS related data). Users can also define their own types of annotations

and easily integrate them within their data representation.

Even with no local data, any laboratory can easily build up an intuitive Web portal

accessing as many remote 2-DE resources as desired.

The Web interface appearance can be personalised for everyone's taste. Data can be

marked to be public, as well as fully or partially private. An administration Web

interface, highly secured, makes external data integration, data export, data privacy

control, database publication and version control a very easy task to perform.”

A.IV. Achievements

In the last few years, Make2D-DB II has established itself as a reference in data

management, in data integration, and in data publication of gel-based proteomics

resources. The tool has been adopted by a large number of academic and private

1 http://world-2dpage.expasy.org/make2ddb/

CChhaapptteerr AA.. IInnttrroodduuccttiioonn aanndd MMoottiivvaattiioonn

 6

organisations, resulting in the expansion of a virtual 2-DE database with data

distributed all over the world.

An important constituent of our project is the recent World-2DPAGE Constellation.

A large virtual resource including a portal to access many distributed data resources at

once, as well as a public standards-compliant repository aiming to host gel-based

proteomics data and to support laboratories that do not have the means of publishing

and giving access to their data on the Web.

Like many other integration and management systems, Make2D-DB II is a

contribution that aims to provide for a better understanding of the complexity of life

science domains.

A.V. Organisation of this document

This document describes the concepts and the development of Make2D-DB II and

its integrative environment. Chapter B gives an introductive overview of the three

fundamental subcategories of molecular biology: genomics, transcriptomics and

proteomics. It then describes proteomics and related techniques in protein separation,

characterisation and identification. The chapter focuses principally on 2D-PAGE

methods and related analyses. Chapter C depicts the variety of data found in the most

important resources in protein classification and characterisation with regard to our

work. Technical aspects related to data structure and management are presented in

chapter D, along with the principal data integration approaches in life science. Some

known data integration systems are examined at the end of this chapter. Chapter E

explains the motivations that drove us to conceptualise and develop Make2D-DB II.

This chapter meticulously inspects all the details concerning the data model, which is

the central element of the tool. The implementation of Make2D-DB II and its

integrative environment are revealed in chapter F. This chapter is a reference on how

the tool is physically working, how the distributed systems interconnect, and how data

is integrated. The functioning of the Web interfaces and the way data is exchanged

between the remote installations are the topics of chapter G. Chapter H evaluates the

contribution of Make2D-DB II in establishing a virtual worldwide gel-based database.

Many datasets and resources that have been constructed using our tool are listed in this

chapter. The last two chapters, H and I, present the most important short and long-

terms perspectives regarding the future of the tool. The place of data integration in

molecular biology in the near future is the final point discussed at the end of this

manuscript.

Alongside the principal document, a supporting set of appendices have been

supplied as a complementary material and reference covering a variety of subjects in

relation to our work.

7

C h a p t e r ����

CHAPTER B. PROTEOMICS: DEFINITION AND
TECHNIQUES

By analogy with the term genomics, the study of the genes, the term

proteomics has been proposed to define the study of proteins. Proteomics study
is a fundamental and vast sub-domain of molecular biology. Its primary
concern is the exploration and the characterisation of proteins, of their
structure, functions and interactions. Studying proteomics is much more

complex than genomics, mostly because a proteome differs from cell to cell and
changes through its interactions with the genome and the environment.

Researchers in the life science fields are assisted in their work by numerous
molecular biology data resources. To be able to benefit from all these data

resources in protein investigations, one needs to have a good understanding of
proteomics. But a good understanding of proteomics and all related techniques
and tools implies a good master of all the basic components of the domain.

In this chapter, we will first give an overview of genomics, transcriptomics,
proteomics, and the “omics” evolving sciences. We will then describe in detail

proteomics and the different protein characterisation and identification
techniques. A supporting description of the fundamental elements in molecular

biology, the genetic material, can be consulted from Appendix I.

CChhaapptteerr BB.. PPrrootteeoommiiccss:: DDeeffiinniittiioonn aanndd TTeecchhnniiqquueess

 8

B.I. Genomics, transcriptomics and proteomics

B.I.1 Genomics

Genomics is the discipline that studies the DNA sequences in the chromosomes of

organisms. One important objective is to detect the genes within the different genomes.

The very first genome to be entirely sequenced was realised in 1977 by Frederick

Sanger for the bacteriophage phi-X174 (Sanger et al. 1977). In 1995, Haemophilus

influenzae became the first free-living organism to be sequenced. Since then, many

genome projects for several species have been initiated all over the world and at a rapid

pace. A rough draft of the human genome was completed by the “Human Genome

Project” in 2001. Current estimates place the human genome at around 3 billion base

pairs and about 25 thousand genes
1
.

There are several sequence databases of different scope and organisation. The

International Nucleotide Sequence Database

Collaboration

2
 (INSDC) is a unified

comprehensive database that contains publicly

available raw DNA sequences with

some basic annotations for approximately 165 000 organisms,

obtained mostly through

submissions from individual laboratories and from large-scale sequencing projects. It is

the outcome of an association between the three major independent DNA sequence

databases: GenBank at NCBI, the National Center for Biotechnology Information

(Benson et al. 2006); EMBL Nucleotide Sequence Database at the European Molecular

Biology Laboratory (Kulikova et al. 2007; Cochrane et al. 2006); and DDBJ, the DNA

Data Bank of Japan (Okubo et al. 2006). The EnsEMBL
3
 project (Hubbard et al. 2007)

offers a broad and integrated source of annotation of chordate genome sequences (33

available genomes in 2007), while Entrez Gene
4
 is a representation of gene-specific

curated and automatically annotated information available from NCBI (Maglott et al.

2005; Geer, Sayers 2003). Some other important species-specific annotated resources

include GDB for Human
5
, AceDB, originally for C.elegans

6
, FlyBase for drosophilia

(The FlyBase Consortium 2003), MGD for mouse (Eppig et al. 2005), MaizeDb
7
 and

EcoGene for E.coli
8
. Many of these data resources were built by means of specifically

adapted data management solutions.

1 Estimates from the “International Human Genome Sequencing Consortium”

2 http://www.insdc.org/page.php?page=home

3 http://www.ensembl.org/

4 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

5 http://www.gdb.org/

6 http://www.acedb.org/

7 http://www.maizegdb.org/

8 http://ecogene.org/index.php

BB..II.. GGeennoommiiccss,, ttrraannssccrriippttoommiiccss aanndd pprrootteeoommiiccss

 9

In addition to DNA sequences, large collections of different resources are available

and cover many specific sub-domains of genomics (gene structure, introns and exons,

splice sites, transcriptional regulator sites and factors, etc.). Genome sequence records

may share some common standard formats for data representation, but conflicts still

exist on adopted terms, especially for gene names and nomenclatures, which may lead

sometimes to great confusion. In all these collections of genes and DNA sequences, the

concept of unique stable identifiers (USI) is essential. In this USI concept, a specific

“object”, e.g., a definite coding sequence, has one stable and unique identifier, at least

within one database. The same concept extends widely to almost all datasets in life

science. Use of Life Science Identifiers (LSIDs), a mechanism for retrieving data and

metadata across different life science databases, is therefore a regular concept. Such

identifiers are commonly called accession numbers.

B.I.2 Transcriptomics

When a gene is active, its coding sequence undergoes the transcription process,

producing an RNA copy of the gene's information. The transcriptome is the set of RNA

transcripts (e.g., messenger mRNA) produced by the genome at one time in a given

organism or in a particular cell type. It can broadly vary depending on external

environmental conditions. The study of the transcriptome is termed transcriptomics
and is widely used in cellular differentiation studies. Beside a large collection of

mRNA databases, many other resources are also specific to non-coding RNA

sequences (tRNA, rRNA) and can be listed from the NAR databases Web site.

The technique used to detect in a sample RNA, that may or may not be translated

into active proteins, is called expression analysis. Expressed genes are frequently

examined using techniques based on EST sequencing (Expressed Sequence Tag),

SAGE (Serial Analysis of Gene Expression) (Velculescu et al. 1995) or on cDNA

microarray technology (Schena et al. 1998). An example of a distributed access

database to store raw and normalised data from microarray experiments is the

“Stanford Microarray Database”
1
 (Ball et al. 2005). ArrayExpress

2
 at the European

Bioinformatics Institute (EBI) stores submissions from users with details covering

experimental protocols and sample preparation in a standard format, while RAD (RNA

Abundance Database) is another public gene expression resource at the university of

Pennsylvania, which includes data from various techniques, like SAGE, in addition to

microarray data
3
. At the NCBI, the Gene Expression Omnibus (GEO) acts as a large

public repository for a wide range of data and is integrated in Entrez, the integrative

“Life Science Search Engine”.

The microarray community has been a pioneer in the life science fields to set up

concrete standards for its data representation. The Microarray Gene Expression Data

(MGED) society is the international organisation established in 1999 to facilitate

sharing of functional genomics, and to focus on proteomics array data (Ball et al. 2002;

Ball, Brazma 2006). The standardisation efforts promoted by MGED are well adopted

1 http://genome-www.stanford.edu/microarray/

2 http://www.ebi.ac.uk/arrayexpress/

3 http://www.cbil.upenn.edu/RAD/

CChhaapptteerr BB.. PPrrootteeoommiiccss:: DDeeffiinniittiioonn aanndd TTeecchhnniiqquueess

 10

by researchers to exchange and re-analyse gene expression microarray data. There are

three main components proposed by MGED:

- MIAME, the “Minimum Information About a Microarray Experiment”, a

document that outlines the minimum information to be reported to

unambiguously interpret and reproduce a microarray experiment

- MAGE, composed by “The Microarray Gene Expression Object Model”

(MAGE-OM), an XML-based document exchange format (MAGE-ML) and

MAGEstk (supporting toolkits)

- MGED Ontology (MO), a set of terms and annotation rules to ensure no loss of

meaning among the community
1

Such efforts have led the way for other communities to establish their own standards

for data exchange. This is currently true with the ongoing efforts undertaken by the

proteomics community.

B.I.3 Proteomics

Knowledge of the genomic sequence is only the first step towards prediction of the

behaviour of gene products (Wojcik, Schachter 2000). Proteomics is defined as the
post-genomic discipline through which biologists identify and quantify the proteins and

characterise their functions, structures, and interactions. It should be pointed out that

protein inventory is only one of the major goals of proteomics analysis. More should be

learnt about principles of protein-protein interactions, regulation of their concerted

functioning, and post-translational modifications. The term proteome itself has been

introduced in the mid nineties to designate the collection of proteins produced by an

organism, a tissue or a cell type (Wilkins et al. 1996). The proteome is much more

variable than the genome because of the interactions proteins may have with the

genome and with each other, as well as the secondary modifications they undergo.

Besides, a proteome is time-dependent as it differs strongly depending on its location,

on the conditions and on the stage of life cycle (Englbrecht, Facius 2005).

Proteomics studies have many objectives, among which the quantification of protein

expression, the comparison between normal and disease protein patterns, the detection

of diagnostic markers, the design of antibodies from antigens, the discovery of drugs

and toxicology markers, etc. Proteomics involves a wide range of studies related to

protein sampling, separation and characterisation (sections B.II and B.III). In simple

terms, proteomics studies reveal a set of acting proteins that have to be characterised.

Supporting information on subcellular location, tissue specificity, functional structure,

but also supporting studies on phylogenetics, data mining and statistical analysis, are all

of assistance for this characterisation. Time is needed to isolate, analyse, quantify, and

identify the precise form of the protein, its functions and interactions with other entities.

Many proteins are abundant and may mask other proteins in lower concentrations,

while the sensitivity of current methods does not allow easy detection of proteins below

a certain concentration threshold. Besides, some of the techniques may even be

inadequate for some types of proteins, or may not be adapted in certain chemical

1 http://mged.sourceforge.net/ontologies/index.php

BB..II.. GGeennoommiiccss,, ttrraannssccrriippttoommiiccss aanndd pprrootteeoommiiccss

 11

conditions at all. As a result, combining different techniques is often necessary to

achieve satisfactory performances. As far as proteomics is concerned, and maybe more

than in any other field, the way any previous experimental or deduced data is reported,

organised and made accessible is highly determinant. Proteomics data resources are

highly heterogeneous, ranging from sequence and knowledge bases
1
, from theoretical,

calculated or extrapolated data, to databases and repositories of experimental separation

and identification results. Because of the importance these resources represent in all

attempts to interpret any proteomics study, and in relation to our work, we will focus on

the more representative of them later in next chapter (section C.II).

The Human Proteome Organisation

The Human Proteome Organisation
2
 (HUPO) is a major player in today’s

proteomics research. A worldwide consortium was launched in 2001 which mainly

aimed at making an inventory of all human proteins, at creating a molecular protein

atlas of cells, organs, tissues, schemas of protein-protein interactions, at developing

special informational databases, and searching for specific markers of pathological

processes (Hanash, Celis 2002). The organisation has already launched several main

projects based on international collaboration and is active in facilitating the sharing and

the exchange of proteomics data ([No authors listed] 2005). Discovery of potential

diagnostic markers and therapeutic targets, one of the main goals of HUPO, will

heavily rely on proteomics expertise techniques, such as 2-D gel electrophoresis

separation and mass spectrometry identification.

B.I.4 “Omics”

Like in genomics, transcriptomics and proteomics, the “-omics” suffix is commonly

used in many other areas of molecular biology. However, some of these areas are not

entirely distinct and may overlap, while others are unclear. While “pseudo-omics” tend

to vanish, the well established other omics will hopefully cooperate and complete each

other.

The term interactomics is now adopted to describe protein-protein interactions and
networks studies, while the term metabolomics has been introduced to represent the
collection of all metabolites involved in a biological system, such as metabolic

intermediates, reactants, hormones and other signalling molecules (Lindon et al. 2005).

This covers the products of gene expression as a whole. “Metabolomics is the

systematic study of the unique chemical fingerprints that specific cellular processes

leave behind” (Daviss 2005). Metabolic profiling, using mass spectrometry and NMR

techniques, intends to give an instantaneous snapshot of the physiology of the cell.

Systems biology emerges from the integration of proteomics, transcriptomics,

metabolomics, and other “omics” to move one step further and materialise a more

complete picture of living organisms (Lisacek et al. 2006b). Integrative and “cross-

omics” approaches are increasingly incorporated in the analysis workflows (Perco et al.

1 A term rather used among life science communities to designate databases of human expertise.

2 http://www.hupo.org/

CChhaapptteerr BB.. PPrrootteeoommiiccss:: DDeeffiinniittiioonn aanndd TTeecchhnniiqquueess

 12

2006). This can be seen as “an attempt to structure knowledge into hierarchical levels:

from gene products to whole organisms” (Lisacek, Appel 2007).

B.II. Protein characterisation in proteomics

“To really understand biological processes, we need to understand how proteins

function in and around cells since they are the functioning units”
1
.

How can proteins mixed in various abundances in a proteome be characterised? One

way is by separating them. Many separation methods are available, among which

chromatography-based and electrophoresis-based techniques. When necessary, multiple

separation procedures can be applied successively in what is referred to as multi-

dimensional separation. Once the proteins are separated, their physico-chemical

properties and their amino acid compositions can be compared. They can also be

broken into smaller pieces, using mass spectrometers, to weigh the resulting fractions.

Each type of amino acid has a unique mass, making identification “relatively”

straightforward. By identifying the smaller pieces or by deducing parts of their amino

acid sequence, the different proteins can be identified.

In this section, and as an illustration, we are going to describe one of the many

possible paths combining different techniques to achieve protein identification.

Figure B.II-1: Protein characterisation - example of a workflow (Wilke et al. 2003).

1 Hanno Steen, director of the Proteomics Center at Children's Hospital Boston

BB..IIII.. PPrrootteeiinn cchhaarraacctteerriissaattiioonn iinn pprrootteeoommiiccss

 13

B.II.1 Sample preparation and isolation of proteins

The first step in identifying proteins that are contained in a cellular extract or in a set

of cells (e.g., a biopsy or body fluid) consists in generating a large quantity of proteins

to work with. The cells are left to grow in a container using a growth medium, a source

of nutrition for the cells allowing the cells to feed and multiply. The cell culture is

divided and allowed to multiply again, as many times as necessary, in order to obtain

hundreds of millions of copies of the original cell. The culture is then placed in a buffer

solution and a detergent is added to dissolve the outer membrane of the cells. This

results in a solution of proteins mixed with cell remains. Centrifugation is then applied

to definitely isolate those proteins from the cell debris.

Sampling of biological material is primarily an intrinsic part of technical laboratory

skills. It significantly influences the quality of proteomics studies, and thus should be

addressed with care (Govorun, Archakov 2002). Examples of sample preparation and

solubilisation methods, especially intended for 2-D electrophoresis (see next sub-

section), can be found at http://www.expasy.org/ch2d/protocols, as well as in many of

the next following listed references.

B.II.2 Protein separation using 2-D electrophoresis

Proteome analysis depends on separation techniques to reduce

the complexity of the

protein mixture. The proteins produced by the cells, generally hundred of thousands of

different types, are to be sorted out. The next step is to separate and organise those

different types of proteins.

One major technique to realise this separation is through 2-Dimensional
Polyacrylamide Gel Electrophoresis (2-DE or 2D-PAGE). This technique being at
the core of our work, it will be the focus of a dedicated section (B.III). At this point, we

only need to know that the separation is performed over a special gel strip where the

proteins, through the application of a voltage, are separated along a line (the first

dimension), and then separated further over an area (the second dimension). The

separation performed over the first axis is based on the disparity of pI (isoelectric
point) between the different proteins. Differences between their molecular weight Mw
(which is more or less proportional to their size) make the separation along the second

axis feasible (Figure B.II-2). A 2-DE-based approach however presents one major

drawback, as some subsets of proteins are not amenable to 2-DE, such as membrane

and basic proteins.

CChhaapptteerr BB.. PPrrootteeoommiiccss:: DDeeffiinniittiioonn aanndd TTeecchhnniiqquueess

 14

Figure B.II-2: Schematic representation of 2D-PAGE protocol.

Once distributed over the gel, forming what we commonly call spots, the proteins

are visually detected, immobilised or “blotted”, and their location is recorded. The final

step of the 2-DE separation process usually consists in cutting out or isolating the

detected spots for further investigations. The material contained within the spots is then

generally transferred into plates or test tubes. This may be done either manually or

automatically using a computer-controlled robotic arm.

B.II.3 Protein cleavage and ionisation for mass spectrometry

Mass spectrometry (MS) has been playing a major role in proteomics for a long

time. For the time being, this technique is widely employed in protein identification and

analysis. The technique is not only useful for protein identification in high-throughput

workflows. It also offers the necessary refinement to bring out more subtle

characteristics, like post-transitional modifications or differential comparison using

isotope labels. More details will be given in the next section.

Having performed the separation process over a protein sample, and in order to

facilitate their identification, the separated proteins are often cleaved (cut) into smaller

pieces. Enzymes, such as proteases, digest (fractioning) the amino acid chain into

smaller pieces, ranging only from 6 to 30 amino acids on average. Those generated

pieces, called peptides, are much easier to handle with the different analysis methods,

especially by mass spectrometry.

Several techniques help feeding the cleaved peptides into the mass spectrometer.

Liquid chromatography (LC) is one of the major techniques used to separate mixtures

in biochemistry and in analytical chemistry. HPLC, more specifically high performance

BB..IIII.. PPrrootteeiinn cchhaarraacctteerriissaattiioonn iinn pprrootteeoommiiccss

 15

liquid chromatography, is a variant of classical LC that forces the mixture to be

separated through the column under very high pressure. LC ensures a steady but fast

stream of the different peptides, which are then uniformly separated and spread out

from a column. The method involves passing the peptide mixture dissolved in a mobile

phase (solvent) through a stationary phase located within the column. The stationary

phase is composed of small particles, beads, with some binding properties for proteins.

The peptides interact with those particles based on their charge, relative solubility or

adsorption, which then causes the peptides to be retained dissimilarly. Varying

chemical conditions in the solution (e.g., with a pH gradient) influences the retention

time of the different types of proteins, causing them to elute separately down the

column. HPLC has the advantage of reducing considerably the time of retention in

comparison to classic LC, thus making the technique appropriate when used in

combination with MS analysis. For more details on chromatography, a helpful online

tutorial is available from “Library 4 Science” at http://www.chromatography-

online.org/.

At the end of the column, the peptides and the solvent reach a cone shape. When

they emerge from the tip, an applied strong electric field ionises them and disperses

them into an aerosol of highly charged droplets. The solvent evaporates, and the

peptides, left to retain the positive charge, accelerate towards the negatively charged

opening of the mass spectrometer. This is called the Electrospray Ionisation, ESI
(Nilsson, Davidsson 2000). Another important technique of ionisation is the Matrix-

Assisted Laser Desorption/Ionisation, MALDI (Karas, Hillenkamp 1988; Zaluzec et al.

1995), sometimes combined with pre LC separation technique experiments, though not

in a continuous and direct flow like with ESI. The following section will deal with the

MS techniques in more detail.

Let us note that many other variants of protein cleavage and ionisation, implying or

not LC pre-separation, are quite common. We can point out for example the molecular

scanner, which is an automated process. All proteins of a 2-DE gel are first

simultaneously digested proteolytically within the gel and electro-transferred for

extraction onto an appropriate membrane (PVDF). The membrane is then directly

scanned by mass spectrometry (Binz et al. 1999).

B.II.4 Mass spectrometry

The purpose of mass spectrometry is to measure the mass-to-charge ratio of gas-

phase ions (m/Z), where m represents the molecular mass of the ion, and Z its effective

charge. The spectrometer generates a mass spectrum representing the masses of

fragmented elements. In proteomics, the spectrometer measures the masses of the

individual peptides and their fragments. This information is used to find out the identity

of the parent peptides, thus identifying the original proteins (Aebersold, Mann 2003).

Developments of technology and methodology in the field of mass spectrometry have

been rapid over the last few years, providing improved and novel strategies for high-

throughput analysis of proteins (Guerrera, Kleiner 2005).

Two major mass spectrometry approaches are used in protein identification. The

Peptide Mass Fingerprinting (PMF), where proteins are cleaved into smaller

peptides, the masses of which are measured, and the tandem mass spectrometry

CChhaapptteerr BB.. PPrrootteeoommiiccss:: DDeeffiinniittiioonn aanndd TTeecchhnniiqquueess

 16

(MS/MS), involving multiple steps of mass selection and analysis. Both techniques are

described in Appendix II. More details are given in Ashcroft A. tutorial on mass

spectrometry
1
.

Many projects aiming to provide expandable repositories for MS-derived proteome

information have been initiated. These data storage resources open many opportunities,

not only to ensure data verification, but also to allow data comparison across different

experiments and platforms. The most prominent of these projects are PeptideAtlas

(Desiere et al. 2006), PRIDE, the “PRoteomics IDEntifications database” (Jones et al.

2006b), as well as OPD (Prince et al. 2004). Each of these projects has slightly different

scopes and goals. Besides, we can also mention other ongoing developments of various

management systems to store and analyse mass spectra, e.g., ProDB (Wilke et al.

2003); or to search and exploit data obtained from publicly available data analysis

servers, e.g., GPM, the “Global Proteome Machine” (Craig et al. 2004).

B.II.5 Other separation and identification techniques

Multiple separation procedures, based on phyisco-chemical properties of proteins

and peptides, can be successively applied on a sample to achieve better efficiency.

Depending on the purpose of the investigation and the available resources, a laboratory

may opt for one strategy or another. Different approaches are now routinely applied in

many laboratories. Alternative multi-dimensional gel-free methods are sometimes

preferred to overcome some issues on analytical sensitivity. It is important to note that

it is not habitually rewarding to study a whole project based on a single biological

sample and identification strategy (Lambert et al. 2005). Statistical methodologies are

solicited to complement the interpretations derived from the various experiments.

Multi-dimensional separation by liquid chromatography

We have already introduced chromatographic methods used in combination with

ESI-MS analysis. Multi-dimensional liquid chromatography (Multi-LC), with the

so-called gel-free methods (with no gel electrophoresis separation), is another

separation alternative that is easily automated, by opposition to 2-DE which is a kind of

“art” rather than a routine technique. Multi-LC works well for some hydrophobic, acid,

basic, very small, very large, and low abundance proteins that may be difficult to

analyse using more traditional separation techniques. Multiple columns, with different

stationary phases, are coupled orthogonally (Figure B.II-3). Fractions collected from

one column are selectively transferred to another column for further separation. At the

same time, new techniques based on isotope labelling of peptides handle well

quantitative comparison of control and experimental samples using MS, without

requiring 2-D electrophoresis. Isotope coded affinity tags (ICAT) is one of those

methods (Gygi et al. 1999).

1 http://www.astbury.leeds.ac.uk/facil/MStut/mstutorial.htm

BB..IIII.. PPrrootteeiinn cchhaarraacctteerriissaattiioonn iinn pprrootteeoommiiccss

 17

Figure B.II-3: An illustration of a two-dimensional LC installation.1

Gel matching in assigning proteins

Under similar experimental conditions, the position of proteins on a 2-D gel and the

shape of their spots may be compared to similar characterised gels - often designed as

reference maps - thus allowing the determination of the proteins according to their spot

location. More details on gel matching will be discussed in section B.III.

Other identification techniques

In addition to the widespread use of mass spectrometry in protein identification,

many other traditional identification methods are still in use. Although some of them

present the inconvenience of being rather slow, labour intensive or relatively expensive,

some identification strategies may still require their application, depending on available

resources and the non-requirement of a strict high-throughput approach. These methods

include, among many others, microsequencing, immunobloting, comigration, and
amino acid composition (Wilkins, Gooley 1997). Generally, the identification of

proteins involves the characterisation of some attributes (e.g., pI, apparent mass, amino

acid composition, sequence tags, etc.) that can be matched against protein databases in

various manners. Those attributes may be used individually or in combination to

identify any particular protein.

Protein chips, or protein microarray (MacBeath, Schreiber 2000), is a relatively

recent technique similar to DNA microarray. A common application of the technique is

to study protein-protein interactions. The most common protein microarrays are the

antibody microarrays. Thousands of different specific proteins are fixed individually on

a chip. A solution of the protein whose partners are looked for inundates the chip. A

fluorescent tag, like with DNA microarray, reveals all proteins in the chip that are

potential binding partners.

1 Copyright RMIT Applied Sciences.

CChhaapptteerr BB.. PPrrootteeoommiiccss:: DDeeffiinniittiioonn aanndd TTeecchhnniiqquueess

 18

3D Structure studies may be the most appropriate to discern information about any

protein’s function, as they represent the protein as closely as possible to its real active

configuration and spatial conformation. Structures are based on experimental X-ray

crystallography, NMR, or cryoelectron microscopy data. Unfortunately, technical

limitations due to protein crystallisation and other crystallography procedures restrain

the number of studied proteins to only a few dozens of thousands. Protein Data Bank
1

(or PDB), the most notable 3D structure collection currently available, indexes about

38’000 known structures that have been deposited until 2006. These defined structures

are however useful to predict other proteins’ structures by similarity alignment.

As already pointed out, and given the wide range of study strategies, researchers rely

more and more in combining results from different techniques, which also include non-

proteomics experiments. This enables a better understanding and a more confidence

with protein identification and functional assignment.

B.III. 2-Dimensional polyacrylamide gel electrophoresis (2D-PAGE)

B.III.1 Separation techniques

“(Although there are) many alternative and complementary technologies (e.g.,

multidimensional protein identification technology, stable isotope labelling, protein or

antibody arrays) that have emerged recently, 2-DE is currently the only technique that

can be routinely applied for parallel quantitative expression profiling of large sets of

complex protein mixtures” (Gorg et al. 2004).

Since proteins differ from each other in terms of mass and charge, it is possible to

separate them according to both properties over a two-dimensional area. Using gel

electrophoresis in two perpendicular directions provides a maximum separation of the

mixture. Once separated, the proteins may be “visually” revealed using staining agents.

This results in a “map” in which spots (stains) can be individually quantified, isolated,
and analysed by identification techniques.

1 http://www.rcsb.org/pdb/home/home.do

BB..IIIIII.. 22--DDiimmeennssiioonnaall ppoollyyaaccrryyllaammiiddee ggeell eelleeccttrroopphhoorreessiiss ((22DD--PPAAGGEE))

 19

Figure B.III-1: A caption of a stained 2-DE gel where the proteins are distinctively
separated in the two dimensions.

Currently, no other technique can match 2D-PAGE in terms of resolution, and

sensitivity, in the analyses and comparison of large mixtures of proteins. It is highly

reproducible, which allows the comparison of experiments between laboratories. On

the one hand, it is used in combination with identification methods, e.g., mass

spectrometry, to systematically identify proteins present in a sample. On the other hand,

the technique is particularly powerful to compare related samples, such as healthy

versus pathological tissues. Comparative 2D-PAGE can also be used to look for

proteins whose expression varies similarly or oppositely by changing environmental

conditions (and thus may have related functions). All these aspects make gel

electrophoresis the most popular separation method in proteomics. A PubMed search in

March 2007 with the keywords “two dimensional polyacrylamide gel electrophoresis”

revealed more than 17’000 papers.

Special pre-treatment of samples and methods of enrichment of rare polypeptides

before 2D-PAGE application may be needed (Herbert et al. 1997). The separation of

the treated sample is then performed over a special gel where the proteins are separated

according to two of their properties:

- First dimension: according to their isoelectric point pI.

CChhaapptteerr BB.. PPrrootteeoommiiccss:: DDeeffiinniittiioonn aanndd TTeecchhnniiqquueess

 20

- Second dimension: according to their size / molecular weight Mw.

There are a large number of proteins in a cell. Some of them may differ in

abundance by six orders of magnitude. 2D-PAGE is not sensitive enough to detect the

rare proteins and many proteins will not be resolved. Splitting the sample into different

fractions is often necessary to reduce the complexity of protein mixtures prior to 2D-

PAGE application.

A gel strip of pH gradient ranging from acidic to alkaline (immobilised pH gradient

IPG), coupled with an applied voltage, makes the proteins migrate over the first

dimension: this is called isoelectric focusing or IEF (Gianazza et al. 1983). Proteins
carry a negative, positive, or zero net charge depending on their amino acid

composition and covalent modification (such as phosphorylation, nitrosylation,

sulphation and glycosylation), and on the pH of their environment. According to its

isoelectric point - the pH at which a protein carries no net electric charge - the protein

advances until an electric balance within the gradient is reached (the position at which

its charge is the same as the surrounding pH). It is important for the proteins to be well

solubilised and reduced before running this procedure; to break up any interaction

between them.

Proteins can then be separated furthermore according to their electrophoretic
mobility (which is proportional to their size/length, their mass or molecular weight,

their higher order protein folding, and other factors). A sodium dodecyl sulfate (SDS)

solution is added to give the proteins a negative charge proportionally to their size. The

solution works also as an agent to denature (unfold) their secondary and tertiary

structure. The strip is transferred to a sheet of gel within a tray. A perpendicular voltage

is applied this time to make the negatively charged proteins migrate downward in

direction of the positive side of the gel located at the other end of the gel area. Proteins

make their way through the gel depending on their size. The smaller a protein is, the

faster it migrates throughout the gel. While IEF shotgun separation without the second

dimension is widespread, 1-D gel electrophoresis techniques (SDS-PAGE) only based

on the electrophoretic mobility of proteins are also commonly used (Figure B.III-2).

At the end, proteins are spread all over the gel according to both their pI and their

size, in what is commonly called spots. Several forms of proteins, when sharing

approximately the same pI and mass, may overlap over the same spot. Spots can be

visually detected by a variety of means; the most frequently used being silver,

coomassie (blue dye) and fluorescent dyes staining (Figure B.III-1). Comparing the

proteins’ positions to biomarkers, serving as landmarks, lets us estimate the effective

values of their pI and Mw. The proteins can then be extracted for further investigation.

Several techniques help transferring the proteins out of the gel onto an immobilizing

membrane (“blotting”). For more experimental details, a highly detailed tutorial by

Gorg including well-described protocols on 2-DE separation with IPGs (IPG-Dat) is

available on-line
1
.

1 http://www.weihenstephan.de/blm/deg/manual/manfrm.htm

BB..IIIIII.. 22--DDiimmeennssiioonnaall ppoollyyaaccrryyllaammiiddee ggeell eelleeccttrroopphhoorreessiiss ((22DD--PPAAGGEE))

 21

Alternatively, in comparative studies, some typical approaches used in microarray

transcriptomics are promoted: difference gel electrophoresis (DIGE) is the labelling of

protein extract with two or three fluorophores, Cy2, Cy3 and/or Cy5, exhibiting

different fluorescent spectra (Figure B.III-3). This allows to separate distinct extracts in

one gel and to evaluate relative quantitative changes in protein content (Unlu et al.

1997).

Figure B.III-2: A SDS-PAGE apparatus (left) producing a one dimensional SDS
strip (right).

In most cases, the gel is scanned into an image representing a map of spots (or of
bands in case of 1-D). 2-D gel analysis software then intervenes to detect and quantify

the relative abundance of the separate and distinct spots. Experts also commonly use

manual visual detection and comparison of spots, especially to adapt potential

incorrectness of automatic algorithms’ detection.

CChhaapptteerr BB.. PPrrootteeoommiiccss:: DDeeffiinniittiioonn aanndd TTeecchhnniiqquueess

 22

Figure B.III-3: 2-D DIGE technology.1

2-DE separation technique has limitations: highly hydrophobic proteins cannot be

solubilised; heavy proteins do not migrate uniformly due to encumbrance; and as

already mentioned its little sensitivity to low abundant proteins. The issue of

incompletely separated (overlapping) proteins, which obstructs quantitative

comparison, is a constraint. Still, this last issue may be partially dealt with by the use of

narrow range pH gels to increase resolution. At the analysis level, the problem of

detecting, quantifying and comparing spots, remains a time-consuming process causing

the most significant bottleneck in any attempt for 2-DE automation.

B.III.2 Gel-Informatics

Analysing a scanned gel often requires a number of manual procedures and to use a

specialised 2-DE image analysis software tool. For a summarizing list of some

available 2-DE software, we may refer to Govorun and Archkov’s review on

proteomics technologies (Govorun, Archakov 2002). These analysing tools rely

primarily on image processing algorithms to detect spot borders and to quantify their

relative intensities. Using well-known biomarkers on the gel makes achievable the

mapping of the gel, in the sense that coordinates of any point on the gel can be

estimated in terms of both pI and Mw axis. In addition, many of these tools have the

ability to match spots between diverse similar gels, thus allowing a quantitative

comparison of protein expression among many samples. Many of them also attempt to

correct running differences between gels by image wrapping. However, as already

pointed out, several challenges must be overcome on image mining or in statistical

approaches based on multiple gel runs. This is also true for automation of the image

analysis process which is currently one of the main bottleneck in 2-DE technology

1 Credit: Amersham Pharmacia Biotech, Life Science News, 7, 2001.

BB..IIVV.. AAcccceessssiinngg pprrootteeoommiiccss ddaattaa

 23

(Dowsey et al. 2003). Recent attempts to avoid such restrictions include the

ProteomeGRID
1
, a grid enabled high-throughput infrastructure for full automation of

proteomics pipeline from 2-DE gel submission to protein identification and

dissemination, with special focus on image-centric analysis for large-scale mining and

statistical cross-validation (Dowsey et al. 2004). The project also aims to contribute to

the development of standards for 2-DE gel ontology, in concert with the Proteomics

Standards Initiative (PSI) (Jones, Gibson 2007). The ProteomeGRID encompasses a 2-

DE gel matching algorithm: RAIN (Robust Advanced Image Normalisation) in which

image intensity distributions, rather than selected features, are considered (Dowsey et

al. 2006).

Figure B.III-4: Melanie / ImageMasterTM 2D Platinum, an example of a 2-DE image
software performing gel matching and statistical analysis2.

B.IV. Accessing proteomics data

Genome and protein sequencing, as well as analyses and characterisation studies and

interpretation, cannot be of great interest without being made accessible to the whole

scientific community. Complementarities and extrapolation of investigations are

1 http://www.proteomegrid.org/

2 http://www.expasy.org/melanie/

CChhaapptteerr BB.. PPrrootteeoommiiccss:: DDeeffiinniittiioonn aanndd TTeecchhnniiqquueess

 24

essential. Therefore, accessing others’ exploration data is vital. The increase of

available data is however exponential, in both quantity and diversification, and this

amount of data cannot be exploitable without being also well organised and finely

interpreted. For the same reason, some guiding rules are necessary when reporting

experiments (Bradshaw et al. 2006; Wilkins et al. 2006).

The availability of data resources is the primary sine qua non condition for

proteomics investigations. The next chapter introduces some of the most important

public and Web-based data resources in proteomics.

25

C h a p t e r ����

CHAPTER C. PROTEOMICS DATA RESOURCES

This section describes the nature of data found in some of the most important

resources in protein classification and characterisation with regard to our work.

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 26

C.I. Introduction

Protein sequence databases are historically the oldest resources ever created in

molecular biology. “Atlas of Protein Sequence and Structure” was first published in

1965 by Dayhoff, and contained about a hundred sequences of uncharacterised proteins

(Dayhoff et al. 1965). A few years later, PDB, the Protein Data Bank (Berman et al.

2007) was created as a repository for three-dimensional structure data of

experimentally determined biological macromolecules. Since 1977, it has become

much easier to obtain DNA sequences than protein sequences, and at the time being,

many genomes have been entirely sequenced. Gene prediction processes, aiming to

locate functional sequences on a genome, have also progressed. Translated protein

sequences have started to be automatically derived from CDS sequences, based on

translation and coding rules. Consequently, an explosion of the amount of available

data has occurred, resulting in an exponential growth of protein sequence databases. In

the meanwhile, and with the evolution of protein separation and characterisation

techniques, as well as the rapid development of communication and exchange facilities

promoted by the Internet, a large array of general and specific data resources, covering

all the many aspects of proteomics, emerged all over the world. A valuable survey in

the “Proteome Research” book, though not entirely up-to-date by the time of this

writing, can be consulted (Bairoch 1997).

In this section, we describe the nature of data found in some of the most important

resources in protein classification and characterisation with regard to our work.

Category labelling is principally brought in to facilitate the reading of this chapter.

However, boundaries between categories should not be considered rigid.

 We will not go through details concerning technical aspects of data structure or

management at this stage, as this will be carried out lately in a dedicated chapter.

Proteomics databases dedicated to protein separation and identification methods, in

particular 2-DE databases, will be presented on their own in sections C.IV and C.V.

Being at the heart of our investigation, 2-DE datasets will particularly benefit from our

special attention.

C.II. Protein sequence resources

As already mentioned, most of the comprehensive source of information on proteins

is contained within the protein sequence databases, as a result of the huge amount of

translated coding genes. Sequence databases are either universal resources covering as

many various organisms and types of proteins without explicit distinction, or more

specific databases centred on a specific organism or a protein family. The universal

resources are either highly curated databases or simple repositories containing DNA

translated sequences, while the specific databases always require domain specialists to

annotate and process their content.

CC..IIII.. PPrrootteeiinn sseeqquueennccee rreessoouurrcceess

 27

C.II.1 UniProtKB/Swiss-Prot

The UniProtKB/Swiss-Prot protein knowledgebase
1
 was, since 1986 until quite

recently, only referred to as Swiss-Prot. Maintained by both the Swiss Institute of

Bioinformatics (SIB) and the European Bioinformatics Institute (EBI), it is by far one

of the most mature and most important protein sequence databases (Bairoch et al.

2004). Data within Swiss-Prot is not just a collection of translated sequences. The non

redundant sequences it contains are extensively annotated, with high quality

information about biological functions, structure, isoforms, PTMs, protein family,

bibliographic references, etc. (Boeckmann et al. 2005). It also provides many external

links (cross-links) to a variety of other resources. This kind of annotation is inferred or

directly imported from publications or submissions, and is performed by domain

experts. Due to its robustness and richness, Swiss-Prot has become since long a

reference in protein designation. The term ‘knowledgebase’ itself is quite appropriate,

as it shows the main characteristic of the database: being a comprehensive compilation

of contributions made by a body of knowledge.

Some in-house controlled vocabularies employed by the database annotators have

gained acceptance. Besides, to designate a specific protein, scientists worldwide

commonly use the Swiss-Prot accession numbers, the identifiers assigned to label
proteins in Swiss-Prot. Those identifiers habitually constitute what we consider the

main index, an index that allows unambiguous designation of individual proteins. This

is even reinforced by the recent developments that have seen all protein orthologs

totally demerged within the Swiss-Prot database.

At the same time, Swiss-Prot also maintains many specific projects, like Human

Protein Initiative HPI, HAMAP for microbial protein families’ annotation, the

ENZYME nomenclature database, or the NEWT taxonomy database. Information in

Swiss-Prot is built and is generally presented in text records, called entries. Each

protein has a distinct text entry, where information is listed in separated

keyword/value(s) sections. Different types of lines, each with their own format, are

used to record the various data that make up the entry. Table C.II-1 is an example of an

annotated entry. It begins with technical information about the entry (identifiers and

dates of modifications), the origin of the protein (descriptive name, gene of origin and

organism), a bibliographic section and a comments section on biological facts. Cross-

references to other external resources and keywords are listed, as well as a dedicated

section (the feature table) for the annotation of the sequence and regions of interest. At

the end of the entry, a consensus sequence of the protein - usually the sequence of the

longest isoform - is given in standard IUPAC one-letter codes. Historically, entries are

presented sequentially one after another in a single text file, called a flat file, for
distribution purpose. Release 52.2 / April 2007 of Swiss-Prot contains more than

263’000 distinct entries.

1 http://www.expasy.org/swiss-prot

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 28

Table C.II-1: A UniProtKB/Swiss-Prot protein entry, <P22222>, in raw text format.1

ID E13B_CELCE Reviewed; 548 AA.
AC P22222;
DT 01-AUG-1991, integrated into UniProtKB/Swiss-Prot.
DT 01-AUG-1991, sequence version 1.
DT 31-OCT-2006, entry version 46.
DE Glucan endo-1,3-beta-glucosidase precursor (EC 3.2.1.39) ((1->3)-beta-
DE glucan endohydrolase) ((1->3)-beta-glucanase).
OS Cellulosimicrobium cellulans (Arthrobacter luteus).
OC Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
OC Micrococcineae; Promicromonosporaceae; Cellulosimicrobium.
OX NCBI_TaxID=1710;
RN [1]
RP NUCLEOTIDE SEQUENCE [GENOMIC DNA], AND PROTEIN SEQUENCE OF 37-63.
RX MEDLINE=91093212; PubMed=1985933;
RA Shen S.-H., Chretien P., Bastien L., Slilaty S.N.;
RT "Primary sequence of the glucanase gene from Oerskovia
RT xanthineolytica. Expression and purification of the enzyme from
RT Escherichia coli.";
RL J. Biol. Chem. 266:1058-1063(1991).
CC -!- FUNCTION: Lysis of cellular walls containing beta-1,3-glucans.
CC Implicated in the defense against fungal pathogens.
CC -!- CATALYTIC ACTIVITY: Hydrolysis of 1,3-beta-D-glucosidic linkages
CC in 1,3-beta-D-glucans.
CC -!- SUBCELLULAR LOCATION: Periplasm.
CC -!- SIMILARITY: Belongs to the glycosyl hydrolase 64 family.
CC -!- SIMILARITY: Contains 1 ricin B-type lectin domain.
DR EMBL; M60826; AAA25520.1; -; Genomic_DNA.
DR PIR; A39094; A39094.
DR HSSP; P26514; 1KNM.
DR GO; GO:0042973; F:glucan endo-1,3-beta-D-glucosidase activity; IEA:EC.
DR InterPro; IPR000772; Ricin_B_lectin.
DR InterPro; IPR008997; RicinB_like.
DR Pfam; PF00652; Ricin_B_lectin; 1.
DR SMART; SM00458; RICIN; 1.
DR PROSITE; PS50231; RICIN_B_LECTIN; 1.
KW Cell wall; Direct protein sequencing; Glycosidase; Hydrolase; Lectin;
KW Periplasmic; Signal.
FT SIGNAL 1 36 Potential.
FT CHAIN 37 548 Glucan endo-1,3-beta-glucosidase.
FT /FTId=PRO_0000012235.
FT DOMAIN 422 548 Ricin B-type lectin.
FT REGION 37 430 Possess beta-glucanase activity, but is
FT unable to lyse viable cells.
FT REGION 472 548 Essential for the lytic activity, but not
FT for the beta-glucanase function.
SQ SEQUENCE 548 AA; 58089 MW; 412B5A4AA24C048D CRC64;
 MPHDRKNSSR RAWAALCAAV LAVSGALVGV AAPASAVPAT IPLTITNDSG RGPIYLYVLG
 … … …
 GTADGTAVWI YTCNGTGAQK WTYDSATKAL RNPQSGKCLD AQGGAPLRDG QKVQLWTCNQ
 TEAQRWTL
//

C.II.2 UniProtKB/TrEMBL

TrEMBL (TRanslation of EMBL nucleotide sequence database) is, as its name

suggests, a collection of translated sequences originating from the EMBL database.

Translation of the coding nucleotide sequences is done automatically, and entries

contain only computer-generated annotations. TrEMBL was created in 1996 as a

complement to Swiss-Prot for protein sequences that are not yet analysed, annotated

and incorporated in Swiss-Prot. TrEMBL entries follow strictly the format of Swiss-

1 The amino acid sequence has been shortened and the copyright text removed to save space.

CC..IIII.. PPrrootteeiinn sseeqquueennccee rreessoouurrcceess

 29

Prot entries. Sequences are kept in TrEMBL until they are analysed, annotated, and

moved to Swiss-Prot. The process of incorporation of entries in TrEMBL entails

translation of CDS from EMBL with redundancy removal performed to some extent. A

standardised transfer of corresponding annotations from Swiss-Prot to non-annotated

TrEMBL entries that belong to already defined protein groups is carried out (Apweiler

et al. 2004). This is done by similarity between homologous proteins using InterPro, the

integrated resource of protein families, domains, and functional sites (Mulder et al.

2007). TrEMBL Release 35.5 / April 2007 contains more than 423 thousands entries.

C.II.3 PIR-PSD

The Protein Sequence Database (PSD) is the main database of the three different

databases forming the Protein Information Resource
1
 (PIR) and is developed at the

Georgetown University Medical Center (Wu et al. 2003). PIR-PSD is characterised by

the clustering of sequences in non-overlapping super-families, and by an efficient

bibliography information system. PIR-PSD has been fully integrated in UniProtKB (cf.

next description).

C.II.4 UniProtKB: The Universal Protein database

UniProt is a consortium formed by the previous three databases. The UniProt

Knowledgebase
2
 merges Swiss-Prot, TrEMBL and PIR-PSD to provide a central

universal database of protein sequences with annotations and functional information

(Bairoch et al. 2005). In practice, and in addition to all Swiss-Prot and TrEMBL entries,

suitable PIR-PSD sequences missing from the other two databases have been

incorporated within the knowledge database. Conversely, bi-directional cross-

references have been added to ensure the tracking of PIR-PSD entries. As it was

mentioned before, the distinct separation between highly annotated and non-annotated

entries is kept within UniProtKB: this explains why we still distinctly cite

UniProtKB/Swiss-Prot and UniProtKB/TrEMBL.

In addition to the central UniProt Knowledgebase, the consortium maintains two

other databases. One is the UniProt Archive (UniParc), a complete and non-redundant

collection of the all publicly available protein sequences, but with no annotations. The

other is UniProt Reference (UniRef), a non-redundant data collections based on the

clustering of UniProt Knowledgebase and UniParc. Clustering is made at three identity

levels (100%, >90% and > 50%) and is helpful in fast sequence similarity search.

C.II.5 Some notes on major nucleotide sequence databases

In contrast to how annotations are carried out in UniProtKB, it is important to know

how annotations are produced in the original nucleotide sequence database source from

where most protein sequences are translated. Entries that are submitted to the

International Nucleotide Sequence Database

Collaboration (GeneBank / EMBL /

DDJB, cf. B.I.1) are the property of their submitters. They contain annotations that no

one except the original submitter can modify, which strongly differ from UniProtKB

1 http://pir.georgetown.edu/

2 http://www.uniprot.org

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 30

policy. As a result, potential errors, redundancy, and heterogeneity of used terms often

occur and persist. A non-linearity between the UniProtKB and the original nucleotide

Universal databases is therefore expected. Table C.II-2 gives the EMBL nucleotide

sequence entry that has been translated into the Swiss-Prot <P22222> entry.

Table C.II-2: Entry <M60826> from the EMBL database.1

ID M60826; SV 1; linear; genomic DNA; STD; PRO; 2697 BP.
XX
AC M60826; M38734;
XX
DT 07-FEB-1991 (Rel. 27, Created)
DT 17-APR-2005 (Rel. 83, Last updated, Version 4)
XX
DE O.xanthineolytica beta-1,3-glucanase gene, complete cds.
XX
KW beta-1,3-glucanase.
XX
OS Cellulosimicrobium cellulans
OC Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
OC Micrococcineae; Promicromonosporaceae; Cellulosimicrobium.
XX
RN [1]
RP 1-2697
RX PUBMED; 1985933.
RA Shen S.-H.H., Chretien P., Bastien L., Slilaty S.N.;
RT "Primary sequence of the glucanase gene from Oerskovia xanthineolytica:
RT Expression and purification of the enzyme from Escherichia coli";
RL J. Biol. Chem. 266(2):1058-1063(1991).
XX
FH Key Location/Qualifiers
FH
FT source 1..2697
FT /organism="Cellulosimicrobium cellulans"
FT /mol_type="genomic DNA"
FT /db_xref="taxon:1710"
FT CDS 463..2109
FT /codon_start=1
FT /transl_table=11
FT /gene="beta-1,3-glucanase"
FT /product="beta-1,3-glucanase"
FT /note="putative"
FT /db_xref="GOA:P22222"
FT /db_xref="InterPro:IPR000772"
FT /db_xref="InterPro:IPR008997"
FT /db_xref="UniProtKB/Swiss-Prot:P22222"
FT /protein_id="AAA25520.1"
FT /translation="MPHDRKNSSRRAWAALCAAVLAVSGALVGVAAPASAVPATIPLTI
FT TNDSGRGPIYLYVLGERDGVAGWADAGGTFHPWPGGVGPVPVPAPDASIAGPGPGQSVT
FT … … …
FT CLDAQGGAPLRDGQKVQLWTCNQTEAQRWTL"
XX
SQ Sequence 2697 BP; 402 A; 1004 C; 954 G; 337 T; 0 other;
 ggatcccgag caccggggcg tcggtggtgc cggtgacgac catcttcgcc ttgttgcgga 60

 … … …

 cgtccatcac cgcgttctcc accagcaccg gcacgaagtc gccacgtgcg cggcctg 2697
//

1 The DNA sequence and the translated amino acid sequence have been shortened to save space.

CC..IIIIII.. OOtthheerr ccaatteeggoorriieess

 31

C.II.6 NCBI sequence repositories

Entrez Protein
1
 is another sequence database built at NCBI (National Centre of

Biotechnology Information). Proteins being slightly or not at all curated, the database is

more of a repository of translated nucleotide sequences and a compilation from other

protein sequence databases than a value-added protein database. Redundancy is

significant. RefSeq
2
 is a collection with a better approach, grouping non-redundant sets

of nucleotide, transcript, and protein sequences with some level of annotation.

NCBI protein identifiers are widely adopted by researchers similarly to UniProtKB

identifiers. It is significant to note that mapping between NCBI protein sequence

databases and UniProtKB is not a straightforward task, especially when dealing with

the relatively unstable NCBI GenInfo identifiers (GI numbers). Most importantly, and

due to the fact that relation between a protein sequence and its “original” coding gene is

not necessarily a one to one relation, gene assignment between UniProtKB and NCBI

systems diverges very much. Unfortunately, this situation causes difficulties when

trying to automatically unify or integrate proteomics resources. An interesting solution

has been recently proposed by Babnigg through the Sequence Globally Unique

Identifier (SEGUID) based on the generation of identifiers from digested proteins’

primary 1-D sequences (Babnigg, Giometti 2006). Unfortunately, this solution is

limited by the fact that not all primary sequences are in fact derived from a direct one to

one genome translation process, e.g., submitted sequences and isoform annotations for

the same protein in UniProtKB/Swiss-Prot. Nevertheless, and without abandoning the

LSID concept, such an approach could generate an additional protein property of

practical interest in integration processes.

C.II.7 Organism-specific protein sequences

There are a large number of species-specific protein sequence databases. Those

databases are generally highly annotated, due to the specificity of their purpose. An

example is YPD, the Yeast Protein Database, which is the first annotated database for a

complete proteome (Payne, Garrels 1997). Organism-specific protein sequences

databases are important resources of information with high quality data provided by

domain specialists. The main inconvenience is the heterogeneity of their formats and

contents, which makes it difficult to uniformly query them or to compare their content.

C.III. Other categories

Numerous resources covering many areas of protein characterisation are available.

Several of these areas have an importance - either directly or indirectly - for the purpose

and the evolvement of our work. We present here a little survey of some of these areas.

1 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein

2 http://www.ncbi.nlm.nih.gov/RefSeq/

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 32

Protein classification

The Gene Ontology Annotation group (GOA) at EBI
1
 is developing GO

2
 functional

annotations to proteins using a hierarchical arrangement (Camon et al. 2004; Lee et al.

2005). The annotations consist of three structured, controlled vocabularies (ontologies)

that describe gene products in terms of their associated biological processes, cellular

components and molecular functions in a species-independent manner. The use of GO

terms by several collaborating databases facilitates uniform queries across them. The

controlled vocabularies are structured so that they can be queried at different levels.

Metabolic and enzyme databases

Computerizing knowledge of molecular and cellular biology systems in terms of

pathways information is not a straightforward task. KEGG Pathway, which is part of

the integrative KEGG database from the Kyoto Encyclopedia of Genes and Genomes
3
,

consists of graphical diagrams of metabolic pathways, and is actually not specific to

any particular organism (Kanehisa et al. 2006). BRENDA
4
 (BRaunshweig ENzyme

DAtabase) is a collection of enzyme and metabolic information with specific species

and enzyme sources or tissues classification (Schomburg et al. 2004). ENZYME
5
,

developed at SIB, is based on recommendations of IUBMB
6
 and it contains identity

and activity information on characterised enzymes that are assigned an enzyme

commission code: EC ([No authors listed] 1999). The database is helpful in the

development of metabolic databases (Bairoch 2000). A more integrative platform that

allows the storage, management, and analysis of interrelated proteins, genes,

interactions, protein families and cellular pathways, is developed at Cornell University:

the Biozon platform (Birkland, Yona 2006a). Biozon warehouses existing published

data from sources such as PDB, Genbank, Uniprot, KEGG, and BIND and integrates

them using in-house derived approach.

Pattern and profiling databases

Particular regions of proteins may play a role, or simply are responsible for a

specific activity or function of the aforementioned proteins. Relationships between

different proteins from a set can be revealed through clustering by looking for

conserved regions at the sequence and the structure level. This leads to the discovery of

patterns and profiles that help in identifying members belonging to the same family.

We have already introduced the InterPro integrative system
7
 as an organised and

documented collection of protein families. It interrelate protein families, domains and

functional sites from the trustworthiest pattern and profiling databases, such as the well-

1 http://www.ebi.ac.uk/GOA/

2 http://www.geneontology.org

3 http://www.genome.jp/kegg/

4 http://www.brenda.uni-koeln.de/

5 http://www.expasy.org/enzyme/

6 Nomenclature Committee of the International Union of Biochemistry and Molecular Biology.

7 http://www.ebi.ac.uk/interpro/

CC..IIIIII.. OOtthheerr ccaatteeggoorriieess

 33

known Pfam
1
, PROSITE

2
, Prints, ProDom or TIGRFAMs. Entries are organised in

these systems by type (family, domain, repeat and PTM, active and binding sites) with

a hierarchical parent-child relationship. Other significant profiling databases include

Blocks
3
 and Prints

4
.

Analysis covering these domains is based on alignment identity and is often referred

to as ‘domain architecture’. The information contained in pattern and profiling

databases is essentially statistical and predicted information.

Molecular interaction databases

Understanding proteomics, and more globally the cell machinery, presupposes a

better portrayal of protein interactions and linked networks. Protein-protein interactions

(PPI) - and more generally molecular interactions (MI) datasets - are often the result of

curation and reporting publications covering the subject, and thus can be hardly

automated. Before the recent efforts of standardisation in proteomics and the rapid

advances made in molecular interactions formulation standards (Hermjakob et al.

2004), it was scarcely possible to compare to each other the many existent protein-

protein interactions datasets, such as IntAct (Kerrien et al. 2007), MINT (Chatr-

aryamontri et al. 2007) or BIND (Bader et al. 2003). Since the last few years, retrieval

of relevant data from different datasets and data comparison can be performed

consistently. More insights on the standardisation efforts are provided in next chapter.

Immunohistochemistry

Proteins may be directly spotted in cells of a tissue section exploiting specific

binding of antibodies to antigens. A particular protein can be viewed under a

microscope using specific fluorescent-labelled or radioactive antibodies. Studying the

localisation, the distribution, and measuring the intensity of target proteins can then

engender significant functional information about their characteristics. The technique

can even be modified to visualise more than one protein alongside. Recently, the

“Human Protein Atlas”
5
 knowledge base for normal and cancer tissues has been

released with more than 400 thousands annotated images corresponding to more than

700 antibodies toward human proteins (Uhlen et al. 2005). The atlas offers links to the

principle protein databases. This represents an innovative and interesting approach, as it

connects directly perceived systems biology observations with formulised and

annotated data related to the actor sub-units involved in the biological process. This

joins the so called ‘inductive’ research approach in which data is generated first and

then analysed to look for interesting models and to find out new hypothesis. An

approach that is particularly applicable to systems biology where the whole system “is

viewed as a delicately balanced interplay of a multitude of processes, which can be

studied in a global fashion using different types of technologies” (Suresh et al. 2005).

1 http://www.sanger.ac.uk/Software/Pfam/

2 http://www.expasy.org/prosite/

3 http://blocks.fhcrc.org/

4 http://www.bioinf.manchester.ac.uk/dbbrowser/PRINTS/

5 http://www.proteinatlas.org/

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 34

C.IV. 2D-PAGE (2-DE) datasets

C.IV.1 Many 2-DE datasets are in loose formats

Sequence databases and repositories are typically large and centralised datasets that

are habitually presented in a well defined or agreed on format. By opposition, 2-DE

datasets, as well as many similar collections of experimental data, are usually limited in

their contents and are often specific in their formats to people and laboratories that are

producing them. They result in many small datasets, often isolated, all over the world.

Besides, many of those resources are in loose formats and are often unstructured and

unrefined. Nevertheless, some resources of significant importance are also available on

the Web and offer practical solutions for parsing and accessing data. Many of those

resources are collections of protein reference maps that are very helpful in repeated or

related analysis due to the high reproducibility of the separation method. Without being

exhaustive, and without focusing on how data is internally organised or managed, we

are going to list here some of the major 2-DE datasets that are available on the Web.

C.IV.2 The early federation approach

In 1996, in an attempt to federate 2-DE datasets with some level of integration,

Appel proposed a simple and efficient way to federate and interconnect remote 2-DE

datasets (Appel et al. 1996). Those rules can be summarised as follows
1
:

Rule 1: Individual entries in the database must be remotely accessible by keyword

search. Other query methods, such as full text search, for example, are possible but not

required.

Rule 2: The database must be linked to other databases through active hypertext

cross-references, so that through a simple mouse click on a cross-reference, the user

automatically is connected to the corresponding WWW site, and the cross-referenced

document is then retrieved and displayed. This simple mechanism links together all

related databases and combines them into one large virtual database. Database entries

must have such a cross-reference to at least the main index (see Rule 3).

Rule 3: In addition to individually searchable databases, a main index that provides a

means of querying all databases through one unique entry point has to be supplied. Bi-

directional cross-references must exist between the main index and the other databases.

Presently, the UniProtKB/Swiss-Prot knowledgebase identifiers define this main index.

Rule 4: Individual protein entries must be accessible through clickable images. That

is to say that 2-DE images must be provided on the WWW server and that as a response

to a mouse click on any identified spot on an image, the user must obtain the database

entry for the corresponding protein. This method enables a user to easily identify

proteins on a 2-DE image.

1 http://expasy.org/ch2d/fed-rules.html

CC..IIVV.. 22DD--PPAAGGEE ((22--DDEE)) ddaattaasseettss

 35

Rule 5: 2-DE analysis software, that have been designed for use with federated

databases, must be able to directly access individual entries in any federated 2-DE

database. For example, when displaying a 2-DE reference map with a 2-DE computer

program, the user must be able to select a spot and remotely obtain the corresponding

entry from the given database.

Though very simple, these conventions proved their efficiency and they were

adopted by many databases that made their appearance on the Web. The first of them

was the well-known SWISS-2DPAGE database. A database that is central to our work.

C.IV.3 SWISS-2DPAGE

General facts

The first and one of the largest databases of 2-DE reference maps on the Web is

SWISS-2DPAGE which is maintained by our group, the Proteomics Informatics Group

at the Swiss Institute of Bioinformatics (SIB), as well as the Biomedical Proteomics

Research Group (BPRG) of the Geneva University Hospital (Hoogland et al. 2004). It

was established and made available for the first time as far back as 1993, and is

accessible from the address http://world-2dpage.expasy.org/ch2d/
1
 (Appel et al. 1993).

With more than 1000 hits per day, it is the second most accessed database on the

ExPASy proteomics server (Gasteiger et al. 2003) after the UniProtKB/Swiss-Prot.

 Due to the proximity of its developers to the Swiss-Prot developers, the 2-DE

database has adopted from its very beginning a format analogous to the one used by the

sequence database: a keyword/value(s) list of annotations for individual proteins

identified on the various maps. The distribution of the database is also largely

supported by means of a flat file, a plain text format listing sequentially all the

identified protein entries one after another. Annotation in SWISS-2DPAGE is of high

quality standard at both descriptive and experimental levels. It includes many reference

maps and a high number of identified proteins. Images show the experimental location

of proteins and information on spots’ properties is displayed. The images can also be

clicked to access the various protein entries. Theoretical location area over the different

maps can be computed for any known protein sequence based on its amino acid

composition. All this features makes the database a relevant resource in protein

investigation and biomarker discovery.

In its current version, release 18.6 / January 2008, SWISS-2DPAGE contains 1265

protein entries, identified from 3976 spots over 36 reference maps and covering 7

1 Search engine at: http://www.expasy.org/swiss-2dpage/

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 36

different species (mainly Homo sapiens, Mus musculus and Escherichia coli).

Documents describing statistical facts, experimental information about protocols,

chemicals and apparatus, as well as 75 bibliographic references, support the database

content. A variety of methods is used to identify spots (Table C.IV-1). Several

identification methods are often commonly applied to the same spot, making

characterisation much more trustworthy.

Table C.IV-1: Identification methods distribution on SWISS-2DPAGE

Identification Method Abbreviation Number of Spots Frequency (%)

Amino acid composition Aa 179 4.50

Comigration Co 88 2.21

Gel matching Gm 1594 40.09

Immunobloting Im 680 17.10

Microsequencing Mi 527 13.25

Peptide mass fingerprinting PMF 1108 27.87

Tandem mass spectrometry MS/MS 741 18.64

Despite its high level of annotation, SWISS-2DPAGE can sometimes lack in

providing full details on identification processes. Although some of this data may be

present in the related bibliographic publications, some deficiency may be sensed when

accessing the database itself looking for more details. For example, mass spectrometry

selected peak values are listed without their intensities, and barely any detailed

justification on protein assignment is given. Users need then to further investigate to

judge of the quality of the assignment. Many of such identification data are internally

accessible to the database maintainers (in diverse formats). However, they ought to be

integrated within the database. The current management system of the database makes

it straightforward to integrate this missing data.

At the core of our development

Until recently, SWISS-2DPAGE was essentially a collection of independent text

entries assembled sequentially in one plain text file of linear structure, the flat file, with

autonomous additional supporting text documents. Annotations were performed

individually on each entry. Redundancy and rigidity are extremely high in such a

format. Furthermore, time was needed to ensure consistency and error-free annotations.

Moreover, and due to the linearity of relations, some data types and associations had to

be represented via the application of strict writing rules. For example, associating

peptide sequences with the MS/MS peak values from which they have been deduced

could hardly be done straightforwardly. If such situations could sometimes be

manageable, it was however obvious that a more structured format was needed.

Therefore, restructuring SWISS-2DPAGE into an appropriate data model and using a

more efficient management system was one of our main initial motivations, in addition

to ensuring that any external information is valid and up-to-date. Even though our

project is intended to be fairly generic and flexible, SWISS-2DPAGE has regularly

been at the core of the project conception. The database has then greatly influenced and

CC..IIVV.. 22DD--PPAAGGEE ((22--DDEE)) ddaattaasseettss

 37

inspired our data model in its initial phases, though without being its sole and exclusive

point of focus. Since late 2006, the official public version of SWISS-2DPAGE has fully

adopted our new data representation and management system (system version: 2.50.2 /

October 2006).

An entry description

As already mentioned, a protein entry, when presented to users in its most basic and

raw view, is a list of two-character codes (data types) each followed by corresponding

annotations that are readable by humans. Some data types are mandatory, some others

are optional, and some may be repeated over several lines. Almost all annotations

follow a precise predefined syntax.

Those views were originally the principal components that were directly used ‘as is’

to build up the database body. An extensive description of annotations’ syntax intended

for this format is given at
1
:

� http://www.expasy.org/ch2d/manch2d.html

Due to the inheritance of many SWISS-2DPAGE keywords from UniProtKB/Swiss-

Prot, more information is described in the sequence database user manual at:

� http://www.expasy.org/sprot/userman.html

We are presenting hereafter some of the most important features of an entry in its

original row format, because of their importance to understand part of the logic in our

development choices. Some notions are introduced here but will be developed when

depicting the data model that we have adopted. We chose a representative entry -

<P0AB71> - that contains some of the elements common to all entries (Table C.IV-2).

Table C.IV-2: SWISS-2DPAGE entry <P0AB71>, previously <P11604>, release 18.3.2

ID ALF_ECOLI; STANDARD; 2DG.
AC P0AB71; P11604;
DT 01-SEP-1997, integrated into SWISS-2DPAGE (release 6).
DT 15-MAY-2003, 2D annotation version 4.
DT 14-NOV-2006, general annotation version 11.
DE Fructose-bisphosphate aldolase class 2 (EC 4.1.2.13)
DE (Fructose-bisphosphate aldolase class II) (FBP aldolase).
GN Name=fbaA; Synonyms=fba, fda; OrderedLocusNames=b2925, JW2892;
OS Escherichia coli.
OC Bacteria; Proteobacteria; Gammaproteobacteria; Enterobacteriales;
OC Enterobacteriaceae; Escherichia.
OX NCBI_TaxID=562;
MT ECOLI, ECOLI-DIGE4.5-6.5, ECOLI5-6.
IM ECOLI, ECOLI-DIGE4.5-6.5, ECOLI5-6.
RN [1]

1 Some minor details may still need some update to suite the current format changes.

2 Copyright text removed to save space.

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 38

RP MAPPING ON GEL.
RX MEDLINE=98410772; PubMed=9740056;
RA Tonella L., Walsh B.J., Sanchez J.-C., Ou K., Wilkins M.R., Tyler M.,
RA Frutiger S., Gooley A.A., Pescaru I., Appel R.D., Yan J.X., Bairoch A.,
RA Hoogland C., Morch F.S., Hughes G.J., Williams K.L., Hochstrasser D.F.;
RT '''98 Escherichia coli SWISS-2DPAGE database update'';
RL Electrophoresis 19:1960-1971(1998).
RN [2]
RP MAPPING ON GEL.
RX PubMed=11680886;
RA Tonella L., Hoogland C., Binz P.-A., Appel R.D., Hochstrasser D.F.,
RA Sanchez J.-C.;
RT ''New perspectives in the Escherichia coli proteome investigation'';
RL Proteomics 1:409-423(2001).
RN [3]
RP MAPPING ON GEL.
RX PubMed=12469338;
RA Yan J.X., Devenish A.T., Wait R., Stone T., Lewis S., Fowler S.;
RT ''Fluorescence 2-D difference gel electrophoresis and mass spectrometry
RT based proteomic analysis of E. coli'';
RL Proteomics 2:1682-1698(2002).
2D -!- MASTER: ECOLI;
2D -!- PI/MW: SPOT 2D-000L0H=5.55/40732;
2D -!- PI/MW: SPOT 2D-000L1R=5.43/39855;
2D -!- AMINO ACID COMPOSITION: SPOT 2D-000L1R: B=10.9, Z=10.5, S=7.2, H=3,
2D G=10.5, T=5.3, A=9.4, P=4.3, Y=3.6, R=3.2, V=7.4, M=1.7, I=5.3, L=8.6,
2D F=4.3, K=4.8;
2D -!- MAPPING: AMINO ACID COMPOSITION AND SEQUENCE TAG (SKIF) [1].
2D -!- MASTER: ECOLI-DIGE4.5-6.5;
2D -!- PI/MW: SPOT 2D-001WMY=5.49/39104;
2D -!- PEPTIDE MASSES: SPOT 2D-001WMY: 955.51; 1502.78; 1762.98; 1878.01; TRYPSIN.
2D -!- MAPPING: Peptide mass fingerprinting [3].
2D -!- MASTER: ECOLI5-6;
2D -!- PI/MW: SPOT 2D-001L5L=5.56/50220;
2D -!- PI/MW: SPOT 2D-001L6U=5.56/49421;
2D -!- PEPTIDE MASSES: SPOT 2D-001L5L: 1320.801; 1502.988; 1878.257;
2D 2591.649; 2719.736; 2871.916; TRYPSIN.
2D -!- PEPTIDE MASSES: SPOT 2D-001L6U: 934.591; 950.583; 953.573;
2D 1320.797; 1502.947; 1878.221; 2591.534; 2719.66; TRYPSIN.
2D -!- MAPPING: Peptide mass fingerprinting [2].
DR UniProtKB/Swiss-Prot; P0AB71; ALF_ECOLI.
//

As shown in the example given above, an entry sequentially lists facts about the protein

identity and its origin, information about the history record and the literature citations

of experimental analysis. In addition, physical facts and identification details on the

various spots from where the protein has been identified are specified for each master /

reference map. The entry ends with a list of cross-references to other relevant

databases.

Identity of the protein and its history

The identity of a protein consists in a common mnemonic but not stable protein

name (ID) that often originates from UniProtKB/Swiss-Prot; otherwise, ID is just a

duplicate of the unique identifier: the accession number (AC). The latter is the real and

sole stable identifier of the protein entry. An AC is always conserved to specifically

designate its corresponding protein. Accession numbers may be, in theory, any

alphanumerical string. By convention, Swiss-Prot patterns are exclusively adopted. It

may happen, in some cases, that a protein holds several secondary accession numbers.

In fact, at a given time, when biologically appropriate, a protein entry may be split

(demerged) into two or more new entries (e.g., a split into distinct species orthologs),

or, on the contrary, be merged with some other protein entry (e.g., when it finally

CC..IIVV.. 22DD--PPAAGGEE ((22--DDEE)) ddaattaasseettss

 39

occurs that it is the same protein). In this case, a new AC is always generated. To ensure

the possibility to track back the newly labelled entries, the older identifiers are

conserved in the record and are then considered as secondary accession numbers. In our

specific example, this means that entry <P0AB71> was once labelled <P11604>. The

ID line contains also some technical vocabulary controlled information about the

current state of the entry, particularly if data shown is complete and verified, or if it is

still in a preliminary phase. Comments on the many aspects of the protein are organised

in topics, containing each some free text information, and may be as well appended to

the entry (the comments CC lines are not present in our example).

Lines with the DT keyword covers information related to the entry creation date and

gives indication of the public releases where it has been lastly modified, as either the

general or the experimental annotations are concerned. The DE line is an ordinary

English scientific description of the protein.

Origin of the protein

Genes coding for the protein, their aliases and ordered locus names (ORF number in

a sequenced chromosome) if any are listed in the GN line. The organism species name,

taxonomic classification and an identifier in a taxonomy database (if available) are

given by the OS, OC and OX section.

Literature citations

Those lines (all lines beginning with the character “R”) indicate the source from

which the experimental data has been abstracted. They are organised in blocks defining

each a distinct reference. The information comprises the type and nature of the

publication, its location/citation, title and authors. Optional cross-references to

bibliographic databases (e.g., PubMed) may also be given.

Maps and spots, with identification methods and data

The MT line lists the master maps in which the protein has been identified and IM

the images’ names associated with the maps. All 2-DE (or SDS) related data, as well as

the identification details are covered in the various 2D (or 1D) blocks. Those blocks

may start with general comment topics similar to the ones in the protein comments lines

about the mapping (identification) procedures as a whole (not present in our example,

cf. <P99015>
1
). Relevant data on the physical properties and the location of the spots

on each map is given with subsequent identification methods and related experimental

data and analysis (when available). Free topics specific to maps and spot expression,

mapping, protein polymorphism, etc. constitute the ending lines of the 2D blocks

(neither present in our example, cf. <P00734>
2
).

Database cross-references

These are the pointers ensuring one of the simplest manners to link SWISS-

2DPAGE entries to related entries found in other resources. The use of the

1 http://www.expasy.org/swiss-2dpage/ac=P99015&format=text

2 http://www.expasy.org/swiss-2dpage/ac=P00734&format=text

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 40

UniProtKB/Swiss-Prot main index, currently the most common protein index, ensures

that the database is able to point to other databases that use the same index.

The raw view of the same entry from a previous version of SWISS-2DPAGE

(before the new environment was applied on the database) is given for a light

comparison (Table C.IV-3).

Table C.IV-3: SWISS-2DPAGE entry <P11604>, release 17.0 / March 2004.

ID ALF_ECOLI; STANDARD; 2DG.
AC P11604;
DT 01-SEP-1997 (Rel. 06, Created)
DT 01-OCT-2001 (Rel. 14, Last update)
DE Fructose-bisphosphate aldolase class II (EC 4.1.2.13) (FBP aldolase).
GN FBAA OR FBA OR FDA OR B2925.
OS Escherichia coli.
OC Bacteria; Proteobacteria; gamma subdivision; Enterobacteriaceae;
OC Escherichia.
OX NCBI_TaxID=562;
MT ECOLI, ECOLI5-6.
IM ECOLI, ECOLI5-6.
RN [1]
RP MAPPING ON GEL.
RX MEDLINE=98410772; PubMed=9740056;
RA Tonella L., Walsh B.J., Sanchez J.-C., Ou K., Wilkins M.R., Tyler M.,
RA Frutiger S., Gooley A.A., Pescaru I., Appel R.D., Yan J.X., Bairoch A.,
RA Hoogland C., Morch F.S., Hughes G.J., Williams K.L., Hochstrasser D.F.;
RT "'98 Escherichia coli SWISS-2DPAGE database update.";
RL Electrophoresis 19:1960-1971(1998).
RN [2]
RP MAPPING ON GEL.
RA Tonella L., Hoogland C., Binz P.-A., Appel R.D., Hochstrasser D.F.,
RA Sanchez J.-C.;
RT "New perspectives in the Escherichia coli proteome investigation.";
RL Proteomics 3:409-423(2001).
2D -!- MASTER: ECOLI;
2D -!- PI/MW: SPOT 2D-000L0H=5.55/40651;
2D -!- PI/MW: SPOT 2D-000L1R=5.43/39776;
2D -!- AMINO ACID COMPOSITION: SPOT 2D-000L1R: B=10.9, Z=10.5, S=7.2,
2D H=3, G=10.5, T=5.3, A=9.4, P=4.3, Y=3.6, R=3.2, V=7.4, M=1.7, I=5.3,
2D L=8.6, F=4.3, K=4.8 ;
2D -!- MAPPING: AMINO ACID COMPOSITION AND SEQUENCE TAG (SKIF) [1].
2D -!- MASTER: ECOLI5-6;
2D -!- PI/MW: SPOT 2D-001L5L=5.56/50220;
2D -!- PI/MW: SPOT 2D-001L6U=5.56/49421;
2D -!- PEPTIDE MASSES: SPOT 2D-001L5L: 1320.801; 1502.988; 1878.257;
2D 2591.649; 2719.736; 2871.916; TRYPSIN.
2D -!- PEPTIDE MASSES: SPOT 2D-001L6U: 934.591; 950.583; 953.573;
2D 1320.797; 1502.947; 1878.221; 2591.534; 2719.66; TRYPSIN.
2D -!- MAPPING: MASS FINGERPRINTING [2].
DR Swiss-Prot; P11604; ALF_ECOLI.
//

Comment on the flat file entries

Whenever data is initially integrated from direct inclusion of such text records into

the database without deep examination, many potential problems and source of errors

can occur. Beside the likely syntax or semantics errors and potential redundancy,

inconsistencies might arise unintentionally (e.g., MI may list some images that do not

appear in the 2D section, or else several distinct spots may share the same exact

position on a map). This is explained by the fact that entries are listed independently

CC..IIVV.. 22DD--PPAAGGEE ((22--DDEE)) ddaattaasseettss

 41

despite the common data they share together (e.g., two distinct proteins may be

identified on the same gel but may be wrongly annotated as belonging to two different

organism!). Without an adapted management system, supervising all these issues

becomes quickly a tedious task. The text view of a protein entry is certainly practical

for human reading, but it can only hold a limited and finite part of the available and

crucial data. It is clearly a view centred on the protein and cannot straightforwardly

catch and represent by itself experimental details (by opposition to a spot centred or an

experiment centred perspective). Quantitative measures of spot expression,

experimental conditions, identification results and analysis either are absent or

significantly undervalued. We have already mentioned the problem of experimental

data representation in such a format, like when we want to associate a specific

experiment to its interpretation. For example, in MS/MS analysis, several peptide

sequences can be associated with each spectrum. To indicate precisely for each peptide

sequence which spectrum and which of its peaks the peptide corresponds is not

straightforward. There are apparently several manners of representing this association

in a plain text file, none of them being satisfying. One manner is to append, in turn, all

subsets of peak values and their corresponding peptide sequences to the entire peak list,

at the cost of complicating the annotation syntax rules. A second manner is to create an

independent block of data for each spectrum and to strictly follow a defined order to list

the peaks and the peptide sequences within each block. A third manner is to assign

local identifiers to the different spectra, and then refer to these identifiers when

associating peptides with spectra. SWISS-2DPAGE uses similar local identifiers for the

bibliographic references (the RN lines). Hence, one can point to the bibliographic

references in the experimental annotation sections of an entry.

Despite these kind of representation problems, the use of a flat file format as source

of data was (and remains somewhat) very popular among many federated 2-DE

databases. This is because of its simplicity and its ease of generation, but also because

of the promotion it has gotten from the former Make2ddb tool (Hoogland et al. 1997).

A tool that was developed in 1997 by the SWISS-2DPAGE team and that helped many

laboratories to publish their 2-DE data, either on the Web or for internal access. A

transition into a more adapted format is indispensable. However, converting already

existent datasets should not be done abruptly. For many practical and social reasons the

conversion should be done gradually to ensure a better acceptance of changes.

Spending too much time in revising their already published data in order to make it

conform would discourage many data producers from adopting a new format. In

addition, switching abruptly to a new format may throw end-users into confusion,

having suddenly to deal with a new format.

C.IV.4 Similar federated SWISS-2DPAGE-Like databases

A number of 2-DE databases are fully or partially federated. Many of them have

adopted SWISS-2DPAGE-like format and have used the initial Make2ddb tool. These

databases are supplied with an engine to search identified proteins based on their

accession number, identifier, description or related publication authors’ names. All of

them have map images where information can be displayed by clicking on identified

spots. Many of such databases are grouped in the well-known WORLD-2DPAGE
List. A list maintained by our team and accessible from the ExPASy server at:

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 42

� http://world-2dpage.expasy.org/list/

This list provides an up-to-date inventory covering the most important public databases.

It currently lists up to 60 databases totalising nearly 400 gel images. Resources are

grouped by species categories and tissues. They are also individually ranked from fully

federated to non federated. Table C.IV-4 lists some of the most representative databases

built with the former Make2ddb tool.

Table C.IV-4: Examples of federated 2-DE databases built with the former Make2ddb tool.

Database Species Institution

PHCI-2DPAGE
1
 Parasite Host Cell

Department of Medical Microbiology and Immunology,

University of Aarhus, Denmark

SIENA-2DPAGE
2
 Multi-species Department of Molecular Biology, University of Siena

COMPLUYEAST-

2DPAGE
3

Yeast Complutense University, Madrid

OGP-WWW
4
 Human Oxford GlycoProteomics Webpage, UK

PMM-2DPAGE
5
 Multi-species Purkyne Military Medical Academy, Czech

ANU-2DPAGE
6
 Rice The Australian National University, Canberra

C.IV.5 Other important federated 2-DE databases

Proteome Database System (2D-PAGE)7

The Proteome Database System for Microbial Research (Pleissner et al. 2004) is a

major federated pathogenetic bacteria database developed at the Max Plank Institute for

Infection Biology in Berlin. Data can be submitted to the centralised database, which

contains identification data and offers comparative analysis by means of a graphical

interface and statistical analysis. This database currently contains more than 34 highly

annotated reference maps.

1 http://www.gram.au.dk/2d/2d.htm

2 http://www.bio-mol.unisi.it/

3 http://babbage.csc.ucm.es/2d/2d.html

4 http://proteomewww.glycob.ox.ac.uk/2d/2d.html

5 http://www.pmma.pmfhk.cz/

6 http://semele.anu.edu.au/2d/2d.html

7 http://www.mpiib-berlin.mpg.de/2D-PAGE/

CC..IIVV.. 22DD--PPAAGGEE ((22--DDEE)) ddaattaasseettss

 43

Yeast Proteome Map1

The Yeast Proteome Map (Perrot et al. 2007) is a 2-DE database of Saccharomyces

cerevisiae developed at the “Institut de Biochimie et Génétique Cellulaires” in

Bordeaux. It is a highly annotated species-specific database, with good quality

identification evidence and a good dynamic gel viewer.

ECO2DBASE

The Escherichia coli gene-protein database has been integrated with its own loader

into the Bio-SPICE warehouse system: a system that provides a common representation

for diverse bioinformatics databases (Garvey et al. 2003). The most recent version,

edition 6, is no longer publicly available. However, if an agreement is reached, there

might be a possibility for the database to be hosted by the Proteomics Informatics

Group at SIB, and made available from the ExPASy server using our Make2D-DB II

tool.

TMIG-2DPAGE2

A Human age-related 2-DE database developed by the Tokyo Metropolitan Institute

of Gerontology. This database provides identification results and many bibliographic

references. It has been integrated into the recent LIPAGE management system, the

open source Laboratory Information Management System for 2DPAGE-based

proteomics workflow, developed at the same institute (Morisawa et al. 2006).

Rice Proteome Database3

The Rice Proteome Database is being developed at the National Institute of

Agrobiological Sciences, in Japan. It contains information on proteins identified from

many rice tissues and organelles. Identified entries are provided with identification

evidence.

HSC4

Another federated 2-DE database of Human maps developed at the Heart Science

Centre, Harefield Hospital. The database is federated and contains a basic search engine

linked to clickable map images. Some few annotations on the identified proteins are

provided.

Human 2D-PAGE databases5

A Human cancer database, developed at the Danish Centre for Human Genome

Research. The database has extensive links to other resources and contains a large

gallery of map references.

1 http://www.ibgc.u-bordeaux2.fr/YPM/

2 http://proteomeback.tmig.or.jp/2D/index.html

3 http://gene64.dna.affrc.go.jp/RPD/database_en.html

4 http://www.doc.ic.ac.uk/vip/hsc-2dpage/

5 http://proteomics.cancer.dk/

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 44

UPD1

The University of Alabama at Birmingham has developed a proteomics federated

database (Hill, Kim 2003), which provides a repository for the storage and linkage of 2-

DE data (mainly Human). Simple quantitative comparative studies using statistical

tools are supplied.

C.IV.6 Not entirely federated databases

2DWG meta-database2

One of the earliest 2-DE gel search engines on the Web was the 2DWG meta-

database (Lemkin 1997). It is a meta-database organised as a large electronic table

containing information about data in other databases. It has become heavily outdated

since then. 2DWG used to offer a possibility to visually compare users’ gels with

others’ gels using the Flicker image tool (Lemkin, Thornwall 1999), a simple Web-

based tool for image comparison.

PROTICdb3

PROTICdb (Ferry-Dumazet et al. 2005) is a project developed at the Bioinformatics

Centre, University of Victor Segalen, Bordeaux. It is a Web-based application acting as

a repository with high visual capabilities, and in which identified spots are internally

interconnected. It is mainly designed to store and analyse projects of plant proteome

analysis by 2-DE and MS techniques. Submitters can upload their annotated data into

projects. Currently, there are two analysis projects, one for Arabidopsis and the other

for Brassica napus. Users of the database can construct complex queries to search its

content, and export of some data to third-party statistical analysis is possible. The

management system is freely available and can be installed on any machine.

Other resources

The following resources are partially or not federated 2-DE databases:

DynaProt DynaProt (Drews, Gorg 2005) is a recent online database of

Lactococcus lactis that is developed at the Technical University of

Munich. It includes a set of experimental and predicted properties.
4

1 http://www.uab.edu/proteinmenu

2 http://www-lmmb.ncifcrf.gov/2dwgDB/

3 http://cms.moulon.inra.fr/proticdb/Protic/home/

4 http://www.wzw.tum.de/proteomik/lactis/

CC..IIVV.. 22DD--PPAAGGEE ((22--DDEE)) ddaattaasseettss

 45

The Key

Laboratory

The Key Laboratory of Cancer Proteomics of Chinese Ministry of

Health is a repository for nasopharyngeal carcinoma Human cancer

2D/MS data. Images are clickable, but very few annotations are

provided. The database has adopted a Xindice XML based storing

system (Li et al. 2006).
1

GelBank Developed at the Argonne National Lab, University of Chicago

(Babnigg, Giometti 2004). This is a multi-species collection of gels. 2-

DE gels are deposited by registered users. The image database contains

modelled gel patterns representing collections of images. Samples are

well annotated, but identification evidence is not systematically

provided. For visual comparison, several gels may be displayed one

after the other, in what the developers call an “animation”. Storage of

retrieved objects (sequences, gel patterns and animations) can be carried

out by users for later use through the so-called Bio-bag container. We

experienced, however, technical problems using the Web interface, as

many actions could not be performed.
2

Human

2D-PAGE

The Human 2D-PAGE Database for Proteome Analysis and Disease is

Developed by the Danish Centre for Translational Breast Cancer

Research. The database contains a gel gallery on Human tumours, with

a dynamic graphical viewer and several external links.
3

BPP-

2DPAGE

A 2D-PAGE database maintained by the U.F.R Leonard de Vinci,

University of Paris 13. It lists maps of hematopoietic cell lines with

cross-references to UniProtKB, but with no identification evidence.
4

YMP The Yeast Mitochondrial Proteome 2D Database, developed at the

Department of Biochemistry, Oulu University, Finland. It provides

clickable maps linked to a whole summary of the identified spot with

little annotations.
5

VIRTUAL2D VIRTUAL2D (Medjahed et al. 2003) is not properly a 2-DE data

resource, but rather a system to generate and visualise virtual two-

dimensional gels from proteins deposited in databases based on their 1-

D sequence. This approach may serve as a rough starting point in some

proteome investigation, e.g., by narrowing a pH range prior to running

2-DE experiment or by predicting the approximate location of low-

expressed unmodified proteins.
6

1 http://www.xyproteomics.org/xmldb/

2 http://gelbank.anl.gov/2dgels/

3 http://proteomics.cancer.dk/

4 http://www-smbh.univ-paris13.fr/lbtp/biochemistry/biochimie/bque.htm

5 http://www.biochem.oulu.fi/proteomics/ymp.html

6 http://proteom.ncifcrf.gov

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 46

Other minor resources are available all over the Web. Minor resources are often

single reference maps, reports or gel image captures with few annotations. Many of

them cannot be easily exploited by machines, and hence can unfortunately not be of

large benefit to the community without appropriate conversion.

A certain number of software tools help building and publishing 2-DE datasets, such

as our Make2D-DB II Tool
1
, the PROTICdb and the LIPAGE projects. Only 2-DE

resources built with one of these tools (and to a lesser extent the Key Laboratory

database) have the ability to exchange data with other external systems. Apart from

manual interaction and/or full content distribution, the other datasets act like isolated

resources lacking flexible capabilities to export data and to dynamically communicate

with the outside world in a machine-readable manner.

C.IV.7 Many unavailable datasets

One of our main concerns and our initial motivations was the amount of 2-DE

experimental analysis that is generated by the numerous laboratories working in protein

identification and characterisation but which are not made available to the researchers’

community. A large number of isolated 2-DE data are produced in so many different

formats, ranging from highly structured formats to very plain text reports, and with

dissimilar levels of annotations. Many of this data is either not available to the

community, or is only published in the literature without being electronically

accessible. Researchers are aware of how data is of limited use unless intelligent

annotation exists in a functional form once presented and published (Hancock et al.

2002). There have always been attempts to share annotations transparently among

multiple groups, but the sharing of information requires a general coordination either

by keeping all annotations in a centralised open repository, forcing all parties to adhere

to a common data representation format, or by requiring a vocabulary and semantic

control.

C.IV.8 Semantic control and standards

The microarray community has already reached a major accomplishment in this

direction with the MGED society, by defining and promoting MAGE, its own standards

(B.I.2). Since the beginning of this century, a number of early attempts with different

approaches to share annotations in proteomics have been supported by some

bioinformatics solutions, like the rather generic Distributed Annotation System DAS

(Dowell et al. 2001) or the Oxford Genome Anatomy Project OGAP, which acts as a

biologic reasoning platform. It is not before 2002 that a major actor on proteomics, the

Human Proteome Organisation, parented an ambitious project to standardise

proteomics data: the Proteomics Standards Initiative, PSI, aiming to achieve

standards in both data exchange and reporting (Orchard et al. 2003). Collaboration

since 2005 with members of the MGED that are developing FuGE, the Functional

Genomics Experiment modelling (Jones et al. 2006a), was another major milestone in

recent PSI developments (Taylor et al. 2006; Hermjakob 2006; Jones, Gibson 2007). In

1 No 2-DE database built with Make2D-DB II has been presented in this section.

CC..VV.. MMaassss ssppeeccttrroommeettrryy

 47

2007, PSI achieved a significant progress by defining MIAPE (Minimum Information

About a Proteomics Experiment) documents
1
 (Taylor et al. 2007). MIAPE documents

outline the minimum information to be reported to unambiguously interpret and

reproduce a proteomics experiment.

C.V. Mass spectrometry

C.V.1 Towards a standardised storage and exchange formats

One of the PSI working groups is the PSI-MS group. It defines community data

formats and controlled vocabulary terms facilitating data representation, exchange and

archiving in the field of proteomics mass spectrometry. PSI-MS was the first PSI

working group to achieve concrete and accepted proposals/recommendations. The PSI
mzData format, intended for raw mass spectrometer output, is now reasonably stable.

mzData is a data format capturing peak list information that aims to unite the large

number of current formats into one. It is not a substitute for the raw file formats of the

instrument vendors. At the same time, there was also another standard format put

forward, the mzXML format, that has been promoted by the Seattle Proteome Center at

the Institute for Systems Biology (ISB) (Pedrioli et al. 2004) and that has gained, since

then, a good acceptance. Merging of mzData and mzXML, into one common format,

mzML (formerly dataXML), is an on-going effort currently undertaken by PSI, with

full participation of ISB. This will reinforce even better the acceptance and the adoption

of a one unique standard format for mass spectrometry data among the proteomics

community.

Analysis of data derived from proteomics experiments is being investigated at the

moment by PSI and FuGE members. This collaboration group is expected to provide

the functional genomics community with a standard format for representing results of

analysing and processing experimental data. The analysisXML data exchange standard
is the likely format to be yet delivered as a result of this collaboration.

C.V.2 Repositories

“Much of our rich understanding of global gene expression patterns comes (…)

from the fact that experimentalists deposited their raw data into the public domain (…)

Proteomics has yet to see the many benefits gained by reanalysis of the (mass

spectrometry) data by computational and statistical researchers...” (Prince et al. 2004).

OPD2

As a gesture toward initiating a public repository for MS data, the previously

mentioned authors (cf. B.II.4) launched the Open Proteomics Database (OPD). This

database is a simple storage system for raw (and large size) files in different formats.

1 http://www.psidev.info/index.php?q=node/91, http://www.nature.com/nbt/consult/index.html

2 http://bioinformatics.icmb.utexas.edu/OPD/

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 48

Files may be downloaded ‘as is’. In April 2007, the database contained roughly

3,000,000 spectra representing experiments on five different organisms.

PRIDE1

The PRIDE PRoteomics IDEntifications database (Jones et al. 2006b) is a

centralised, standard compliant, public data repository for proteomics data centred on

protein and peptide identifications as well as on the evidence supporting these

identifications. Identifications are related to specific species, tissues and sub-cellular

locations, and sometimes made under specific disease conditions. They are generally

annotated with supporting mass spectra. Proteomics laboratories can submit their

identifications and spectra to PRIDE to support their manuscript submissions to

proteomics journals. Data is submitted in PRIDE XML format when identification data

is included. Mass spectra without identification data are submitted in mzData format.

Being a web application, submission, searching and data retrieval from PRIDE can all

be performed using an Internet browser. The repository can be searched by experiment

accession number, protein accession number, bibliographic reference and sample

parameters. Data can be retrieved as machine-readable PRIDE or mzData (the latter

being used for mass spectra without identifications), or as human-readable HTML. The

database implementation, while presently centralised, is open-source code and can be

mounted on various servers
2
.

At the present moment, PRIDE contains more than 2000 separate experiments,

comprising over 300’000 protein identifications, 1’400’000 peptide identifications, and

approximately 400’000 spectra. PRIDE protein identifications can be queried through

DAS, which provides details of the coordination of peptides. PRIDE aims to fully

support the yet to emerge PSI analysisXML format for identification data analysis and

aspires, in the long term, to provide an automated program for regular re-analysis of

deposited mass spectra. Cooperation agreements to exchange data between PRIDE and

other emerging repositories are currently in progress.

PeptideAtlas3

PeptideAtlas is a first step towards a full annotation and validation of eukaryotic

genomes using experimentally observed protein-products. It is a collection of peptides

identified in a large set of LC-MS/MS proteomics experiments originating from

published and unpublished data (Desiere et al. 2006). All results of sequence searching

have subsequently been processed statistically through PeptideProphet
4
 to estimate a

probability of correct identification for results and to remove false positives (Desiere et

al. 2005); Thus, in April 2005, 3.3 million spectra has already been processed. Peptides

have been mapped to EnsEMBL (B.I.1) and can be viewed as custom tracks on the

EnsEMBL Genome Browser using DAS. A uniform analytical process ensures a

meaningful comparison of data across different experiments, generated by different

1 http://www.ebi.ac.uk/pride/

2 http://sourceforge.net/projects/pride-proteome/

3 http://www.peptideatlas.org/

4 http://tools.proteomecenter.org/PeptideProphet.php

CC..VVII.. SSoo mmaannyy ddaattaa rreessoouurrcceess…… wwhhaatt iiss tthhaatt ggoooodd ffoorr??

 49

groups using different instruments (149 experimental datasets were available in April

2007). Raw data from these diverse experiments are made available in several formats

and all data is loaded into SBEAMS
1
. SBEAMS is an html-based relational database

that allows integration of disparate data types, such as ICAT and cDNA experiments,

and was implemented to facilitate data management at the ISB.

The Global Proteome Machine2

The Global Proteome Machine (GPM) allows users to quickly compare their

experimental results with the best results that have been previously observed by other

scientists. It is based on a combination of data analysis servers storing publicly

submitted identification data, a user interface, and a relational database that retrieve

relevant information obtained from the public data analysis servers (Craig et al. 2004).

Underlying schemas are designed to validate observed protein coverage and peptide

fragmentation data. This resource was initially designed to assist validating MS spectra

and protein coverage patterns, exploiting previous peptide assignments. Although

somewhat restricted to minimal information, GPM can access a variety of peptide

identifications performed in many different experimental conditions. In April 2007, the

repository was comprising more than 700’000 distinct peptide identifications. Being

open source, the system can be easily installed as an in-house data storage system, or it

can be used as an add-on to an existing Laboratory Information Management System

(LIMS).

C.VI. So many data resources… what is that good for?

It would have required a whole manuscript to list all the useful existing proteomics

resources available for researchers in proteomics. A fairly exhaustive and up-to-date

reference list, as previously indicated, is made available each year by the Journal of

Nucleic Acid Research
3
. For some rapid access, many other exhaustive lists of links to

proteomics resources can be found all over the Internet
4
. But how can we best benefit

from all these resources?

Having access to so many resources may be confusing. Navigating in many different

locations and processing query results from one resource before accessing another

resource is extremely tedious. Gateways or Web portals
5
 are partly a solution to

simplify this process. There are a number of integrated data retrievals and analysis

systems that may be helpful to access many resources all at once, and to appropriately

process data using bioinformatics tools. These systems tend to combine original data at

different levels and in different manners with some logics related to the nature of the

queries. The refinement of such logics, which is a vast domain of investigation in

1 http://www.sbeams.org/

2 http://gpmdb.thegpm.org/

3 http://www.oxfordjournals.org/nar/database/cap/

4 http://bioinformatics.ubc.ca/resources/links_directory is a handy example

5 A pathway to many distributed applications and sources made accessible from one single entry point.

CChhaapptteerr CC.. PPrrootteeoommiiccss DDaattaa RReessoouurrcceess

 50

Bioinformatics, varies enormously between one system and another. Entrez
1
 (B.I.1), the

“Global Query Cross-Database Search System” developed at NCBI acts as an

integrated search and retrieval system providing access to many databases

simultaneously from one single user interface. The databases’ coverage ranges from the

Entrez gene or protein sequence databases, to biomedical literature citations (PubMed)

and taxonomy definitions of species. The EBI provides an equivalent approach, the

Integr8 Web portal that accesses more related EBI databases (Kersey et al. 2005).

Many other systems will be mentioned later, like Biozon (Birkland, Yona 2006a),

which is a unified biological resource on DNA sequences, proteins, complexes, and

cellular pathways based on a graph approach and that integrates data from many

resources such as UniProtKB, PDB, GenBank, and KEGG.

This underlines the necessity of offering comprehensive and intelligent integration

solutions. In Chapter D. many approaches and technologies related to data integration

are discussed after examining how data is organised and made accessible.

1 http://www.ncbi.nlm.nih.gov/gquery/gquery.fcgi

51

C h a p t e r ����

CHAPTER D. DATA MANAGEMENT AND
INTEGRATION

The transition from in vivo to in silico biology requires not only a good

understanding of the nature of the data on hand, but also to deal with a huge
amount of information coming from many different and heterogeneous data
sources. Those sources are generally called databases, which is a term used to
designate a large and organised entity of persistent data, associated with the

appropriate tools to update and retrieve the data inner items. With the
availability of numerous public databases, researchers have to face a large range
of related problems and challenges in order to make the best possible use of the

data. These problems are ranging from the diversity of semantics, of data
formats to technologies and interfaces used to access the database content.
However, the lack of technical and semantic homogeneity is not the only one
difficulty to surmount. Problems of incomplete information, or worse, of

incompatibilities and conflicts between data are often encountered. A part from
these problems, social and political concerns also have to be taken into account.

CChhaapptteerr DD.. DDaattaa MMaannaaggeemmeenntt aanndd IInntteeggrraattiioonn

 52

D.I. The nature of biological data resources

Besides the huge amount of biological data, its most notable aspect is its diversity

and variability. Biological data sets are complex and are organised in loose hierarchies,

which is the consequence of our incomplete (and in worst cases inconsistent)

understanding of life science and the relationships between its diverse sub-domains.

When inspecting the many data resources available over the Internet, we rapidly notice

the degree of autonomy and diversity of those resources when compared to each other.

At a semantic level, conflicts may be spotted between the resources. Some of the data is

even presented in a legacy system in which no structured information management

system exists. As for the adopted structure, the data content is stored or presented in a

whole variety of formats, ranging from plain text files, spreadsheets, HTML, XML or

RDF (unstructured or semi-structured formats) to relational (structured), object oriented

layout and binary files.

D.I.1 Managing data in bioinformatics

Data is at the centre of all researches in life science. It is of crucial importance to

accurately capture, organise, annotate, maintain and retrieve data as well as to separate

relevant information from irrelevant one. This is precisely what we designate by data

management. An introductory book defines bioinformatics to be “the science of

creating and managing biological databases to keep track of, and eventually simulate,

the complexity of living organisms” (Buehler, Rashidi 2005).

Generally, we use the term data source or data collection to indicate a source of data

that is not managed by a database management system (DBMS) and where no evident

organised structure is present. When data is structured and concepts of modelling are

apparent, we commonly use the term database.

For a simple use case, let us consider a collection of data covering the identified

spots on a set of 2-DE gels. For each spot, we may define the following properties:

o A unique spot identifier

o A unique gel identifier

o A species from which the sample originates

o The position and the volume of the spot expressed in some relative measurement

unit and its physical properties (pI and Mw)

o One or several identified proteins from a protein sequence database (e.g.,

UniProtKB), each protein defined by a unique identifier

o Peptide sequences (from MS/MS analysis)

o …

Those properties, along with the relationships among them, constitute the database’s

schema. Properties are called attributes. They can be single-valued (e.g., the gel

DD..II.. TThhee nnaattuurree ooff bbiioollooggiiccaall ddaattaa rreessoouurrcceess

 53

identifier or the species) or multi-valued (the peptide sequences). The attributes can be

either atomic (a simple type, like numeric values for pI and Mw in our example), or

nested (a structured type, like “protein”, which itself is a combination of an identifier

and a knowledgebase name) (Eckman 2003). As for the schema, it must ensure data

accuracy. Constraints, both at the logical or the biological levels, must be satisfied and

must be reflected within the schema. A logical constraint, for example, would be for the

relative volume not to exceed 100%. A biological constraint would also limit the

alphabet used in the peptide sequences to the set of symbols representing the basic

amino acids. Constraints may also be extended over several entries or instances (an

instance being a single data record, i.e., a given spot defined by its specific attributes).

Two spots sharing the same gel identifier cannot originate from two different species.

This data set is dynamic, in the sense that some records might be added, modified, or

deleted. The initial schema itself may be subject to many modifications. New attributes

may be added or modified. We may decide, for example, to include a link to a mass

spectrometry repository to validate the given peptide sequences, or to use a nested new

attribute listing the related genes of the identified proteins and their chromosomal

locations.

Another important task in managing data is to correctly handle concurrency. This

consists, for example, in taking into account how to manage the activities of several

users when they are curating the same entries simultaneously. A curator’s change must

be complete before a second curator’s change can be applied. Conflictual situations

must be considered with extreme care and inconsistencies should be correctly handled.

For example, a curator may split a spot into two new distinct spots, while a second

curator is submitting annotations regarding the initial spot. These annotations may be

skipped or be applied to one or to both new spots.

A database is useful only if data can be extracted out of it. Queries should be

expressed in some querying language that includes search predicates, the conditions

that must be satisfied by the extracted data. Such languages generally include logical

operators (i.e., OR and AND) and some algebra operators (e.g., Union, Join…). We

may want, for example, to retrieve all the identified proteins with a pI of 7±0.5 that

belong to a particular species. This query will be decomposed into distinct sub-queries.

An efficient management system should optimise the execution cost (evaluated in time

and resource usage) by adopting an adequate strategy when portioning this initial

query. This is called a cost-based query optimisation. The strategy depends on many

factors that include the quantity of data to be parsed, the time needed to access the

database, the specificity of the search predicates, the existence of indexes, etc. In the

earlier example, a strategy would be to first extract all the spots satisfying the pI

condition and then, in a second step, check them one by one to only keep those

originating from the appropriate species. If the adopted management system has a high

cost in comparing numerical values, or if the first sub-query would deliver a huge

number of spots in comparison to those belonging to the species, a better strategy

would be to start by catching the spots satisfying the species condition before applying

the pI condition over the retained spots. Another alternative is to decompose the initial

query into two distinct sub-queries, one looking for all spots in the indicated pI range,

and the other extracting all those belonging to the specified species. The result of the

CChhaapptteerr DD.. DDaattaa MMaannaaggeemmeenntt aanndd IInntteeggrraattiioonn

 54

Union of the two subsets is then delivered (the spots that are simultaneously present in

the two retrieved subsets).

D.I.2 Data Structure

Data structures can be ranged into three levels: base, linear and non-linear data

structures. Each level is associated with specific data types. For the base data structures,

the data types are the primitive (atomic) types, i.e., strings, integers, float, etc. The

linear data structures are associated with one or multi-dimensional lists and associative

arrays, while the non-linear data structures are formed by graphs and trees data types.

Unstructured data

The most chaotic data representation in proteomics would be a collection of

information with no inherent structure, gathered in an indistinct order. Any particular

portion of information may or may not be present and no apparent relations between

data items exist. There is no possibility to formulate queries or to extract information.

Such a type of data is purely unstructured and is essentially text oriented.

Unstructured data includes any text-based driven documents with meaningful

information without following a precisely defined structure. Such documents are to be

read by humans, since the lack of a definite structure makes them not adequate for

automatic parsing by computers. Expressing dimensionality and complex data types

(e.g., nested attributes) in such documents is not an intuitive task. Most of those

documents are simple text reports or loose information contained within HTML (Hyper

Text Markup Language) pages for Web display. Indexing methods can be applied with

unstructured data to retrieve some information.

Structured data

At the other extreme, data follows a formal and well-defined data model, which is

the abstraction through which data is organised and viewed. The model defines the

relationships between data items in a strict manner and guarantees completeness, in

the sense that nothing defined in the data model is allowed to be missing. Whenever a

data item is not provided it is given an undefined (absent) value. Nothing not defined in

the data model can be present either. This is called structured data.

Structured data can be easily organised and remodelled. The relational model

(based on predicate logic and set theory, cf. Appendix V.), the hierarchical model (a

tree-like structure with nodes having a single parent and multiple children), and the

network model (a lattice structure of nodes with multiple parents and children / many-

to-many relationships) are all models of structured data
1
. Object-relational and object-

oriented models also offer methods of structured data.

Spreadsheets

A spreadsheet is a single two-dimensional grid / table consisting of rows and

columns of primitive types. Spreadsheets are very popular because of the availability of

1 http://www.itouter.com/Database/encyclopedia.htm

DD..II.. TThhee nnaattuurree ooff bbiioollooggiiccaall ddaattaa rreessoouurrcceess

 55

applications that produce them and because of the simplicity to generate readable text

reports using these applications. Although this format benefits from a bi-dimensional

organisation, it can only define linear types. Nesting multi-valued attributes cannot

therefore be expressed without the use of a well-defined format. No relationships

between data in separate tables can be directly expressed. Spreadsheets are exported as

text CSV or tab-delimited text files.

Semi-structured data

Many types of data are partially unstructured while following at the same time some

of the characteristics of structured data models. Those types are commonly called semi-
structured data types. They do not follow all the strict rules of a structured model and

data content may be incomplete. Due to the fact that this category offers a compromise

between the two extreme types and that, in practice, biologists do not wish to spend all

their time and efforts using a strict and non-flexible data model approach, many types

of data format used to store molecular biology data fall into this category. Besides,

making use of semi-structured text formats in data exchange, in data publication, and

particularly in data integration, is much more convenient, when compared to the

abstraction of a fully structured relational presentation.

In a semi-structured presentation, data is organised in semantic entities where

similar entities are grouped together. However, this presentation does not require

similar entities to have the same attributes. Besides, the order of attributes is not

necessarily important and not all the attributes may be required. The data types of the

same attributes in a given group of entities may even differ. The information that is

normally associated with a schema is contained within the data, and is commonly

called self-describing. Semi-structured data models are built using labelled directed

graphs rather than labelled trees that have a unique path for each leaf. Use of object

identifiers is possible to refer to any node.

Semi-structured formats have the advantage of being easy to query, without entirely

knowing the model or the data types. These formats can be either read by humans or

parsed by computers. They offer a flexible solution to integrate heterogeneous data.

They are widespread in molecular biology databases, where the need of structural and

free text data is desired. However, optimisation and consistency are often hard to

achieve.

Flat files

A flat file is a file that contains records or entries (cf. C.IV.3). Flat files have syntax-

oriented formats. Records are listed sequentially and fields from each record are often

delimited by specific characters. They are simple to read but allow computer parsing

only if their structure is strictly defined and known. Dealing with flat files to extract

data remains however complicated and unsafe, given the lack of constraints, the

complexity to express non-linearity, and the difficulty to handle format changes. The

simplicity of this format makes many major databases in proteomics continue to adopt

it to distribute their contents, e.g., UniProtKB (along with XML and RDF) and SWISS-

2DPAGE.

CChhaapptteerr DD.. DDaattaa MMaannaaggeemmeenntt aanndd IInntteeggrraattiioonn

 56

Object Exchange Model

The Object Exchange Model (OEM) is a graph-based, self-describing object

instance model, which provides the basis for object representation in a graph structure

with objects either being atomic or complex. OEM can be an advantageous alternative

to flat files, however, only few data representations in proteomics are exploiting this

format, e.g., the ANNODA tool (Prompramote, Chen 2005).

Extensible Markup Language (XML)

The Extensible Markup Language standard was first published by the W3C
1
 in

February 1998. It is a simple and flexible text format derived from SGML, the Standard

Generalised Markup Language, which is a meta-language used to define markup

languages for documents. Originally designed to meet the challenges of large-scale

electronic publishing, XML is also playing an important role in the exchange of data on

the Web and between applications. XML has two basic mechanisms for declaring text

structure: XML Document Type Declarations (DTD) and XML Schemas (XSD). XML

DTDs are the original and most widely supported approach, but lack the full ability to

define data types and data widths. XSDs, a well-formed schema defined in XML, offer

these features, along with namespace and constraint definitions.

XML data representations are widely used in life science (Achard et al. 2001). The

microarray community already reached a significant achievement in defining an XML-

based data format for data production and exchange: MAGE-ML (Spellman et al.

2002). The international Taxonomic Databases Working Group (TDWG) proposes a

data representation for taxonomic information based on XML (Kennedy et al. 2006). In

proteomics, many works about the management and the storage of data using XML

exist, such as AGML, a centralised approach to describe and store 2D-PAGE data

(Stanislaus et al. 2005), Proteios, a repository for the assembly and the analysis of gel-

based proteomics workflows (Levander et al. 2007), and PRIDE, a repository to store

mass spectrometry data (B.II.4). More importantly, the inclusive Proteomics Standards

Initiative developing standards for data exchange and reporting in proteomics delivers

XML-based data representations (C.IV.8). The practicality of using XML-based

formats in proteomics is examined in many reviews, e.g., to define standards for 2D

electrophoresis data representation (Ravichandran et al. 2004).

While XML is appropriate for data exchange, it is not an absolute solution or a

substitute for good data representation. Problems of inconsistency and redundancy

often arise. Incompatibility is unavoidable since XML representations can be used in

different ways to encode the same information. Using directly XML-based formats

(also called native XML) for data storage or computation in bioinformatics also

engenders performance and scalability problems (Lin et al. 2005). Alternatively, some

systems store data in a structure format (e.g., relational databases) and provide an

interface that allows users to view and query data in XML. These systems, called

XML-enabled systems, overcome the traditional problems related to semi-structured

formats. XML-enabled systems are more adapted for data-driven queries, while native

XML systems are more efficient for document-driven (nested data) and navigational

1 http://www.w3.org/XML/

DD..IIII.. TThhrreeee mmaaiinn aapppprrooaacchheess iinn ddeessiiggnniinngg ddaattaa iinntteeggrraattiioonn ssyysstteemmss

 57

queries (linked data). The type of system that is most appropriate depends therefore on

the type of queries expected and the data being integrated.

Resource Description Framework (RDF)

The syntactic and document-driven XML cannot perfectly achieve the level of

interoperability required by the highly dynamic and integrated bioinformatics

applications (Wang et al. 2005b).

RDF
1
, originally designed by W3C as a metadata model, has evolved into a general

method of modeling information through a variety of syntax formats. The RDF

metadata model is a knowledge-representation that can explicitly describe the data

semantics. It is an abstract model that makes statements about resources using subject-

predicate-object expressions (called triples). The subject indicates the resource, and the

predicate indicates aspects of the resource and expresses a relationship between the

subject and the object. RDF statements represent a labelled, directed pseudo-graph
2
.

The mechanism is promoted by the W3C's Semantic Web
3
 and is particularly

convenient with life science data (Mukherjea 2005) in order to make software store,

exchange, and use machine-readable information distributed throughout the web with

better efficiency and confidence, and using shared ontology (Web Ontology Language /

OWL
4
). RDF is mostly serialised in XML format, a representation that is

distinguishable from the abstract RDF model.

The main advantage of RDF is its stability regarding structural changes (adding

nodes and edges). RDF is an emerging technology in proteomics and in life science in

general. Currently, few resources provide data using this technology. UniProtKB is

probably the first resource to propose a distribution of its content using this format
5
 (an

ongoing project) along with the Gene Ontology project GO
6
 (C.III). Recent

developments include YeastHub, a prototype application to warehouse yeast genome

data (Cheung et al. 2005), and AlzPharm
7
, an RDF subset of BrainPharm

8
 based on an

associated ontology (Lam et al. 2007).

D.II. Three main approaches in designing data integration systems

The main characteristic of a data integration system is its ability to provide a

uniform query interface from which one can access, in a reliable manner, a multitude of

1 http://www.w3.org/RDF/ and http://www.w3.org/TR/rdf-concepts/

2 A pseudo-graph is a graph that contains multiple edges and loops.

3 http://www.w3.org/2001/sw/

4 http://www.w3.org/TR/owl-guide/

5 http://dev.isb-sib.ch/projects/uniprot-rdf/

6 http://www.geneontology.org/GO.format.shtml#RDF-XML

7 http://ontoweb.med.yale.edu/AlzPharm/

8 A database (under development) to support research on drugs for the treatment of neurological disorders.
http://senselab.med.yale.edu/BrainPharm/

CChhaapptteerr DD.. DDaattaa MMaannaaggeemmeenntt aanndd IInntteeggrraattiioonn

 58

heterogeneous data sources. The system must be able to perform queries and to react to

changes in the underlying sources, whether those changes are updates to the schema or

to the data content. Its design therefore implies to consider different sorts of

management problems. Those problems are ranging from data warehouse design and

modelling, maintenance of physical data independence, significance and evolution of

the original data sets, to query optimisation and the generation of physical and logical

views. The ultimate goal of a data integration system is to free the user from locating

isolated sources relevant to some queries, interacting with each one individually and

combining their results manually (Halevy 2001).

There are principally three approaches in designing a data integration system. The

data warehouse approach
1
, the mediator approach and the federated approach (Tatbul et

al. 2001). The first two approaches are clearly distinct, while the third, the federated

one, can be coupled with any of the other two.

D.II.1 The warehouse approach

The warehouse approach consists in physically collecting the data to be integrated

from multiple sources. This can be done in two different ways: the procedural and the

declarative manners. The simplest one, the procedural manner, consists in storing the

sources without using any integrator schema. In an extreme situation where no structure

is imposed, we talk of a data repository, which means importing and storing data as it

is. As far as the declarative manner is concerned, a common format is used to translate

and reconstruct the original data, and once it has been cleaned and reconciled, it is then

physically stored into a unique system. The warehouse system contains then

materialised views (i.e., physically stored rearrangements) of the original data. This is

considered a subject-oriented approach that, if well performed, offers the advantage of

presenting already combined data to end-users, and to boost efficiency by reducing pre-

processing time, but it has the disadvantage of being time-dependent and not

spontaneously sensitive to updates on the original sources. Keeping the materialised

views up-to-date is then a significant concern (Hull 1997). Planning scheduled

incremental updates and properly managing local versions is a way to overcome this

issue.

D.II.2 The mediator approach

In the mediator approach, a global schema and a set of sources compose a typical

data integration system (Lenzerini et al. 2001). The real data is located at its original

sources, while the global schema provides a reconciled and integrated view of the

primary sources. This schema represents a set of relations associated with the

considered domain and is not physically storing data “as is” in the system (Figure

D.II-1). A variant of the schema, called mediated schema, differs from the global one

by the fact that entities (the physical objects of interest, e.g., a protein family, a 3D

structure...) do not all need to be modelled, but only those that are shared within the

system. This offers more flexibility in the sense that changes applied to the sources

have a minimal impact on the mediated schema. Another advantage is that adding new

items (i.e., additional sources) becomes less arduous. Schematically, a mediated

1 http://en.wikipedia.org/wiki/Data_warehouse

DD..IIII.. TThhrreeee mmaaiinn aapppprrooaacchheess iinn ddeessiiggnniinngg ddaattaa iinntteeggrraattiioonn ssyysstteemmss

 59

schema can be represented as a graph (or a network) where each node indicates some

entity in the domain. Edges connecting the nodes are the relations between those

entities (Mork et al. 2001).

D.II.3 The federated systems

A federated integration system is a collection of semi autonomous distributed

databases, each of which having significant autonomy though providing access to all

the other members of the system in a unified manner. Some authors do not consider

federation to be truly a data integration approach (Hull 1997). The system is not

centralised and it can be seen as an intermediate situation between no integration at all

(where each resource has to be queried individually) and full integration (where all

resources are queried by way of the integration system). The schemas of all resources

are put together for the query. Mediator systems may be assimilated to loosely coupled

versions (not sharing a unified schema) of federated systems (Hernandez,

Kambhampati 2004). A tightly coupled federated system designates constituents that

are sharing the same schema. In order to remain autonomous while respecting

federation expectations, components of a federated system should share facilities to

communicate in three ways:

o Data exchange: all components should be able to share data with each other

o Transaction sharing: for situations where a component does not allow full access

to its data, but only to some operations performed on its content.

o Cooperative activities: each component should be able to perform complex

queries involving access to data from other components

A federated approach largely provides significant autonomy for resources, allowing

users to query them separately while all resources can still collaborate with each other

to answer the query. A main inconvenience in such architecture is the need to map each

source’s schema to the others in a pair wise mapping. In a system of n components, and

unless some algorithm is applied to manage the interconnection between the

components in an optimal way, the interconnection coverage will require n * (n - 1)

schema translations. We may imagine an “intelligent” interconnection coordinator that

would only necessitate components to be registered.

A federated system can be allied with the both already mentioned approaches.

Federated mediators, for example, can be seen as part of a cooperation environment in

which queries are addressed to a union of federated mediator databases (Cheng,

Boudjlida 2005).

CChhaapptteerr DD.. DDaattaa MMaannaaggeemmeenntt aanndd IInntteeggrraattiioonn

 60

Local schema Local schemaLocal schema

Mediator
(global/mediated or
warehouse schema)

Source Source Source

D.Int. System data

API
Query

Adapters

Figure D.II-1: Interaction between the integrator schema and the data sources.

D.II.4 What to consider

One primary aim of the integration task is to propose a suitable model reflecting the

relation between the sources and the global (or mediated) schema in the mediator

approach, or the materialised views in the warehouse approach. By wrapping data, we

mean retrieving data from the sources and translating it into an integrator schema. This

data is then, either stored in a warehouse system, or directly presented to the user in a

mediator approach. Despite the relative simplicity of the figure (Figure D.II-1), one

should keep in mind the many inconveniences suggested by this representation. In

particular, the following issues need to be pointed out:

DD..IIII.. TThhrreeee mmaaiinn aapppprrooaacchheess iinn ddeessiiggnniinngg ddaattaa iinntteeggrraattiioonn ssyysstteemmss

 61

♦ Heterogeneity of the sources, their associated semantics and/or their time-

varying schemas

♦ Technical limitations to access those sources

♦ The process of data extraction, of data translation, filtration and the way to bring

those data together

♦ The choice of materialising data vs. a virtual integration (i.e., data warehouse vs.

mediators)

♦ A fair understanding of what users of the system need, balanced with what can

be practically offered

♦ Building of a consistent model to cover the relations between the integrator

schema and the sources, but also making this model reasonably flexible to

handle potential changes (abstraction)

♦ Expressing and optimising answers to questions formulated in the global schema

reasoning but with data originating from disparate sources, each having its own

logic (the query plan)

♦ Tracking of unambiguously data provenance (Buneman et al. 2000) and the

management of local versions

♦ The maintenance of updates related to the sources at both the content and the

structure level

♦ The Performing of updates on the global schema considering the whole system’s

components and the evolution of users’ demands

♦ Data exporting / exchange with other systems

The previous list, without pretending to be exhaustive, reflects the main challenges

one has to face when conceptualising any data integration system; we will therefore

portray the major aspects of each of those points throughout this document. The

specificity of the domain covered by the system is by itself a major factor of

consideration. Given the high complexity of data on hand in the life science areas, and

more particularly in the purpose of our work in the proteomics fields, the problems

dramatically expand by their amounts and granularities. As a result, there is obviously

no “best” approach to adopt. Many issues can be addressed with different approaches,

and one system suitable for a specific situation – with some specific goals - may be

inappropriate or extremely difficult to apply to another one.

D.II.5 The query plan

Several works on answering queries using views were inspired by studies on the

maintenance of physical data independence in relational and object-oriented databases.

CChhaapptteerr DD.. DDaattaa MMaannaaggeemmeenntt aanndd IInntteeggrraattiioonn

 62

A separation between the logical and the physical views of the data is characteristic of a

data integration system (Halevy 2001). An interface is needed between the logical

organisation of data and its physical distribution. In a mediated approach, where a

conceptual query addressed to the system is expressed in terms of the global schema

(source-independent), a mediator is responsible for reformulating the queries into a set

of queries to the original sources (source-dependent). A query plan defines how to

decompose the query into this set of sub-queries, to send the sub-queries to the sources,

and to assemble (i.e., filter, aggregate or merge) the results into the final answer.

Typically, the query plan in an integration system will imply a union of several

queries over the sources. However, it is hard to always find an equivalent rewriting of

the initial query, especially given the fact that views may often not be complete (i.e.,

they may only contain a subset of their definition attributes). Three typical algorithms

are presented in the Halevy review. The bucket algorithm, where the query posed on the

mediated schema is reformulated into a query referring directly to the available data

sources, the inverse-rules algorithm, where a set of rules that invert the view definitions

is constructed, and the MiniCon algorithm, which takes into consideration how each

variable of the query can interact with the views. The output of these algorithms is not

exactly considered a query execution plan, but rather as a query referring to the view

relations. The completeness of a query-rewriting algorithm expresses the ability of the

algorithm to find a reformulation of the query if this reformulation exists.

Let us take as an example the TAMBIS (Transparent Access to Multiple

Bioinformatics Information Sources) system architecture (Stevens et al. 2000). A single

user interface lets the user perform his/her queries without a need to choose the relevant

sources or the order in which to carry out sub-tasks (Figure D.II-2). The system uses

Concepts based on basic biomolecular biology knowledge. New concepts are defined

thanks to a model of knowledge (ontology-based model
1,2
) expressing the relations

between the primary concepts. For example, two concepts Motif and Protein may be

linked by a relation of the type ‘is component of’ to form the new concept Protein

motif. To perform a query involving a specific concept, the TAMBIS interface will ask

the knowledge model about the parents, children and siblings of this concept, and about

their valid relations to other concepts. A survey of knowledge-based information

integration is given by Paton et al. (Paton et al. 2000).

In a warehouse approach, where the data is already combined and locally stored

within the integration system, we still need to ensure that we are able to answer all the

required queries using the materialised views. Reformulating a query may be necessary

in order to optimise the processing time. Let us consider, for example, the case where a

user wishes to extract all members of a protein family for some specific species, as well

as for all the close descendants of this species. The user may define the protein family

criteria and the species taxonomy identifier within his/her query. To optimise the

execution process, the order in which the sub-queries are executed has its influence.

Should we begin by extracting all the protein families corresponding to the given

1 http://www.daml.org/ontologies/99

2 http://www.cs.man.ac.uk/~horrocks/Ontologies/tambis.daml

DD..IIIIII.. OOnn tthhee ppaarrttiiccuullaarriittiieess ooff tthhee ddaattaa wwaarreehhoouussee aapppprrooaacchh

 63

criteria before filtering only those specific to the species of interest, or should we

proceed in reverse? This situation is somewhat similar to what a query execution plan

and an optimiser are responsible for in a RDBM system.

Figure D.II-2: The TAMBIS system architecture – processing a query into the
query plan (Stevens et al. 2000).

The DiscoveryLink system (Haas, et al. 2001) provides an answer to cases similar to

the above mentioned situation. DiscoveryLink is an integration system allowing users

to query data, which may be physically located in many disparate sources, as if all the

data was collocated in a single virtual database. It is based on a federated database

system and built on technologies from the DB2 DataJoiner (Gupta, Lin 1994) and the

Garlic research project (Haas et al. 1997). While the integration approach is a federated

mediator-based approach, a database middleware engine containing the appropriate

wrappers acts as a virtual RDBM system. A Data Definition Language (DDL) - based

on the Structured Query Language SQL (Ullman, Widom 2001) – is used to register

configuration meta-data in system catalogues. For each data source, selections of data

will be exposed to the system as tables. To process a user query, the system will first

evaluate the cost based on a server attribute table (SAT) that is defined for each data

source. An optimiser is then invoked to set up the “best” query plan to be adopted,

following a traditional dynamic programming approach similar to those used in

conventional RDBM systems.

D.III. On the particularities of the data warehouse approach

As already presented, a data warehouse approach is based on a local centralisation of

the data sources to be integrated. Most of the implementations are dominated by the

relational database management system (RDBMS) and by adopting the high-level

standards of SQL. The environment is structured, entirely controlled and benefits from

high reliability and stability. On the one hand, network delays and timeouts are avoided

at query execution time. On the other hand, the maintenance cost is extremely high

CChhaapptteerr DD.. DDaattaa MMaannaaggeemmeenntt aanndd IInntteeggrraattiioonn

 64

given the likely dynamic, and sometime unpredictable, behaviour of biological sources.

Moreover, data may not always be up-to-date.

D.IV. On the particularities of the mediator approach

D.IV.1 Modelling and Views in a mediator approach

There are two main approaches for the purpose of modelling the mapping in a

mediator data integration system (Lenzerini 2001), the global-as-view (GAV, also
called global-schema-centric) and the local-as-view (LAV, also called source-centric)
approaches. The first one implies that the schema reflects, and should be expressed, in

terms of the data sources. The second one requires a schema independent from the

sources. In the latter case, relations between the schema and the sources are defined by

considering each source to be a view within the global schema. There are, of course,

many other possible types of relations in between those two approaches (GLAV). In all
cases, and independently of the adopted mapping between the global schema and the

sources, the integration system is required to answer queries in terms of the global

schema. Users should not be concerned by the manner data is stored or collected from

the different sources; instead, they should only be concerned by what we can call the

logic of the global or the mediated schema. This logic represents a set of relations

linked to the considered domain. The associated data does not need to be stored in the

system.

D.IV.2 Some semantics

As already stated, a mediator system (I) has three main components: the global or

the mediated schema (G), the sources (S) and the mapping (M) between G and S. We

can formulate the system in terms of the triplet (G, S, M) (Lenzerini 2001). Queries to I
are expressed in terms of G in some query language – with some expressive power -

that we may call LQ. This language defines- how data has to be extracted from the

virtual database represented by the integration system. Both G and S are themselves

respectively expressed in some specific language (LG and LS) over a corresponding

alphabet (AG and AS). The symbols forming those two sets of alphabets are

respectively the elements of G and S. A set of assertions constitutes the mapping

between the global schema and the sources. Instinctively, LM,G and LM,S symbolise

the query languages responsible for the mapping. Those definitions are general enough

to describe theoretically any system integration approach.

D.IV.3 LAV, GAV and GLAV

The most important aspect when designing a mediator-based integration system is

how correspondences between data from the sources and in the global/mediated schema

are modelled. In the GAV approach, integrated data is organised as a view of all data

sources. Queries are straightforwardly translated into sources queries, but the wrapping

of a data source is a tough work, considering the fact that any change in the structure of

the sources implicates the wrappers to be revised. Inversely, as the LAV approach

DD..VV.. CCoommmmeennttss oonn tthhee tthhrreeee ddiiffffeerreenntt iinntteeggrraattiivvee aapppprrooaacchheess

 65

defines each data source to be a view of the entire integrated schema, wrappers

maintenance is much easier. However, the cost of query evaluation is higher.

In 2002, Lacroix published a proposal to deal with the heterogeneity and instability

of semi-structured data and non structured documents retrieved from the Web, e.g.,

HTML and flat files (Lacroix 2002). The method is a combination of the local and the

global as-view approaches based on an intermediate object view mechanism called

search views. The presented object Web wrapper (OWW), based on the Object

Protocol Model – OPM - (Chen, Markowitz 1995) uses a view mechanism where data

sources capabilities are listed by mean of attributes and tools used to parse the retrieved

documents. Retrieved data is then cached in XML format for information extraction.

This consists mainly in identifying the access and attributes for each Web data source,

designing a search view corresponding to this access, writing a parser and registering it

in the search view, and finally designing the user view by collecting information

defined in the search view and extending it to all extractable information.

D.V. Comments on the three different integrative approaches

Warehousing emphasises data translation, as opposed to query translation in the

mediator approach (Sujansky 2002). As indicated by its name, data translation implies

to translate data from native sources into a common shared format and to address them

uniformly by the same query executer. Maintenance cost is very high, especially when

the underlying databases evolve with time. Translating a query into an equivalent set of

local queries is the aim of query translation. This is more difficult to implement, and is

not feasible at all, if no adequate interface to receive remote queries is attached to the

data sources. In some approaches, query translations are based on procedural mappings.

This kind of system is a hybrid between data and query translation. Procedural

functions import and translate data into a shared format only when invoked by a query

requiring access to this data. Kleisli, a mediator-based system, has adopted this

approach (Chung, Wong 1999).

Data integration applications have to handle partial information, no matter what the

modelling approach is. In all approaches, answering queries is an inference process that

has to cope frequently with incomplete information. Reasoning is needed to answer

queries due to the constraints usually applied to the global schema (Lenzerini et al.

2001).

In some conventions, the components called mediators are not “purely true”

mediators (Ullman 1997). Given the fact that a mediator generates views, the

warehouse approach, which is founded on materialised views, may be somewhat

considered as a system using mediators indirectly to collect and combine data from the

sources.

The three integration approaches can conceptually coexist and collaborate within the

same system, with different levels of implication. In Make2D-DB II, an autonomous

database, a mainly warehouse-based resource, is part of a network of federated

databases. Nonetheless, those remote database systems are not identical because their

CChhaapptteerr DD.. DDaattaa MMaannaaggeemmeenntt aanndd IInntteeggrraattiioonn

 66

versions and their individual schemas can differ (and are, therefore, not tightly

coupled). Query translations, which are classically close to a mediator-approach, are

then carried out to ensure data exchange between individual systems.

Detecting and characterising changes on data sources in the warehouse approach

Detecting changes on data sources is an important issue in the warehouse approach.

A push or a pull technology can be used. In a push technology, users register queries

with the primary data sources and request explicit notification when changes occur that

match their queries. In a pull technology, users periodically check the underlying data

sources to see if a change of interest has occurred. In order to perform a push action,

data sources must be capable of processing and storing user queries, as well as

generating and sending back electronic notifications. Currently, only very few data

sources / datasets offer such services, e.g., the Swiss-Shop service of

UniProtKB/Swiss-Prot, which is a minimal service notifying users by e-mail when new

entries satisfying a set of criteria have been created. A more advanced push service is

the RSS (Really Simple Syndication) service, which is an automated technology to

push data into special programs or filtered displays. UniProtKB is currently in the

process of integrating a RSS service.

Another aspect in characterising changes is to track exactly how and when the

underlying data source has changed, in order to distinctively propagate these changes to

users of the integrative system. This is complex since updates are characterised in many

ways: by relying on periodic global data source versions, by time stamping data entries

and records, or by maintaining a list of changes and additions in a separate

downloadable inventory. Many data sources / datasets offer more than one of these

alternatives, e.g., UniProtKB and the Make2D-DB II environment.

D.VI. Examples of data management and integration systems

A large variety of data integration systems in life science has been developed over

the last decade (Wong 2002; Lacroix, Critchlow 2003a; Hernandez, Kambhampati

2004; Garcia et al. 2005; Lisacek et al. 2006a). The systems described in these reviews

adopt diverse combinations of integration approaches. They vary significantly by their

purposes, their scopes, their architectures, and their practicalities.

Table D.VI-1 and Table D.VI-2 display a compilation of different data integration

systems. The reason for listing so many systems with their characteristics is not to

evaluate them, but rather to illustrate and to compare different approaches in data

integration and data management. To adopt any of these systems, a research group must

consider many various factors. These factors include, among many others, the nature of

data to deal with, the purpose of the research, the flexibility of the integration approach,

the type of resources to be integrated, their availability and their steadiness. The factors

also include practical considerations, like available computer resources, expertise with

the used technologies, the purpose and the lifetime of the project, etc. It is only by

having a global overview of the different possibilities on hand that a research group can

have a suitable choice adapted to its needs.

DD..VVII.. EExxaammpplleess ooff ddaattaa mmaannaaggeemmeenntt aanndd iinntteeggrraattiioonn ssyysstteemmss

 67

Table D.VI-1 displays a non-exhaustive list featuring the elementary aspects of some

representative general integration systems:

� SRS (Etzold, Argos 1993; Etzold et al. 2003)

� Entrez (B.I.1)

� EnsEMBL (B.I.1)

� Atlas
1
 (Shah et al. 2005)

� DiscoveryLink (Haas, et al. 2001) and OPM (D.IV.3)

� K2/Kleisli and the Genomics Unified Schema / GUS (Davidson, et al. 2006)

� TAMBIS (Baker et al. 1999) (Figure D.II-2)

� Integr8 (Pruess et al. 2005) / BioMart (Durinck et al. 2005)

� Biozon (Birkland, Yona 2006b)

More specific gel-based integration systems are also listed in Table D.VI-2. Some of

these systems are mainly management systems with almost no integration

characteristics as defined earlier:

� Proteome Database System - 2D-PAGE
2
 (C.IV.5)

� PROTICdb
3
 (C.IV.6)

� ProteomeWeb
4
 (Babnigg, Giometti 2003)

� PARIS
5
 (Wang et al. 2005a)

� 2D/MS repository of NPC proteome
6
 (Li et al. 2006)

� Make2D-DB II
7

1 http://bioinformatics.ubc.ca/atlas/

2 http://www.mpiib-berlin.mpg.de/2D-PAGE/

3 http://cms.moulon.inra.fr/proticdb/Protic/home/

4 http://proteomeweb.anl.gov/

5 http://w3.jouy.inra.fr/unites/miaj/public/imaste/paris/

6 http://www.xyproteomics.org/xmldb/

7 http://world-2dpage.expasy.org/make2ddb/

CC
hh aa

pp tt
ee rr

 DD
.. DD

aa tt
aa
MM

aa nn
aa gg

ee mm
ee nn

tt
aa nn

dd
II nn

tt ee
gg rr

aa tt
ii oo

nn

68

T
a
b
le
 D
.V
I-
1
:
A
 n
o
n
-e
x
h
a
u
s
ti
ve
 l
is
t
o
f
g
e
n
e
ra
l
d
a
ta
 i
n
te
g
ra
ti
o
n
 s
ys
te
m
s
.

S
ys
te
m
 p
ar
ti
cu

la
ri
ty

O
ve
ra
ll

in
te
g
ra
ti
o
n

ap
p
ro
ac
h

In
te
g
ra
ti
o
n

o
f
n
ew

d
at
a,
 d
at
a

u
p
d
at
e

D
at
a
m
o
d
el

M
ai
n
 q
u
er
y

la
n
g
u
ag

e

M
o
d
el

ex
te
n
si
o
n

co
st

D
at
a

ex
ch

an
g
e

S
em

an
ti
c

ap
p
ro
ac
h

E
n
d
-u
se
r

ex
p
er
ti
se

In
te
ra
ct
iv
it
y

m
ed

iu
m

L
ic
en

si
n
g
 /

d
is
tr
ib
u
ti
o
n

S
R
S

R
e
tr
ie
v
a
l
s
y
s
te
m
 f
ro
m
 i
n
d
e
xe
d

fl
a
t
fi
le
,
X
M
L
 a
n
d
 r
e
la
ti
o
n
a
l

d
a
ta
b
a
s
e
s

C
la
s
s
if
ic
a
ti
o
n

o
f
lo
c
a
lly

im
p
o
rt
e
d

d
a
ta

D
a
ta
 m
u
s
t

b
e
 i
m
p
o
rt
e
d
,

n
o

a
u
to
m
a
ti
c

u
p
d
a
te
s

L
in
k
e
d
 t
e
xt

re
c
o
rd
s
 a
n
d

h
ie
ra
rc
h
ic
a
l

Ic
a
ru
s
 /
 l
o
g
ic
a
l

s
ta
te
m
e
n
ts

L
o
w

L
o
w

N
o

L
o
w

 A
P
I

C
o
m
m
e
rc
ia
l1

E
n
tr
ez

P
o
rt
a
l
fo
r
d
a
ta
 f
ro
m
 a
 s
e
t
o
f

p
re
-d
e
fi
n
e
d
 d
a
ta
b
a
s
e
s

C
la
s
s
if
ic
a
ti
o
n

o
f
d
a
ta
,

n
a
v
ig
a
ti
o
n

D
is
tr
ib
u
te
d
,

d
e
la
y
e
d

u
p
d
a
te
s

L
in
k
e
d
 t
e
xt

re
c
o
rd
s

 W
e
b

s
e
rv
ic
e
s
 a
n
d

A
N
S
.1

2

L
o
w

H
ig
h

M
e
d
iu
m

L
o
w

 A
P
I

N
o
t

d
is
tr
ib
u
te
d

E
n
sE

M
B
L

A
n
a
ly
s
is
 t
o
o
ls
 o
n
 c
o
lle
c
te
d

d
a
ta

W
a
re
h
o
u
s
e

C
e
n
tr
a
l,

a
u
to
m
a
ti
c

S
tr
u
c
tu
re
d
:

re
la
ti
o
n
a
l

 S
Q
L

H
ig
h

L
o
w

N
/A

L
o
w

 A
P
I

a
n
d

p
ro
g
ra
m
m
a
ti
c

in
te
rf
a
c
e

F
re
e

D
is
co

ve
ry

L
in
k
(a
n
d

O
P
M
)

V
ir
tu
a
l
In
te
g
ra
ti
o
n
 o
f
d
a
ta
 f
ro
m

a
 s
e
t
o
f
p
re
-d
e
fi
n
e
d
 /

re
g
is
te
re
d
 d
a
ta
b
a
s
e
s

F
e
d
e
ra
te
d

m
e
d
ia
to
r

(m
e
d
ia
to
r)

D
is
tr
ib
u
te
d
,

o
n
 t
h
e
 f
ly

S
tr
u
c
tu
re
d
:

re
la
ti
o
n
a
l
(o
b
je
c
t

la
y
e
r)

W
ra
p
p
e
rs
 S
Q
L
 /

D
D
L

H
ig
h

H
ig
h

N
/A

H
ig
h

P
ro
g
ra
m
m
a
ti
c

in
te
rf
a
c
e

C
o
m
m
e
rc
ia
l

K
2/
K
le
is
li

D
is
tr
ib
u
te
d
 q
u
e
ry
 s
y
s
te
m

M
e
d
ia
to
r

D
is
tr
ib
u
te
d
,

o
n
 t
h
e
 f
ly

S
e
m
i-
s
tr
u
c
tu
re
d
:

M
L
 (
K
le
is
li)

o
b
je
c
t-
o
ri
e
n
te
d

(K
2
)

 O
Q
L
3

a
n
d
 C
P
L
 1

M
e
d
iu
m

H
ig
h

H
ig
h

H
ig
h

 T
e
xt
-

b
a
s
e
d
 a
n
d

R
M
I2
 c
lie
n
t
+

G
U
I

N
/A

3

1 S

R
S
im

po
se

s
so

m
e
co

ns
tr
ai
ni
ng

 c
on

di
tio

ns
 fo

r
fr
ee

 a
ca

de
m

ic
 u

se
.

2 A
bs

tr
ac

t S
yn

ta
x
N

ot
at
io
n

O
ne

 (A
SN

.1
) i

s
a
fo

rm
al
 la

ng
ua

ge
 to

 a
bs

tr
ac

tly
 d

es
cr

ib
e
m

es
sa

ge
s
to

 b
e
ex

ch
an

ge
d

am
on

g
m

an
y
ap

pl
ic
at
io
ns

 in
vo

lv
in
g
ne

tw
or

ks
 a
nd

 I
nt

er
ne

t.

3 T
he

 O
bj
ec

t Q
ue

ry
 L

an
gu

ag
e
(O

Q
L
) i

s
a
qu

er
y
la
ng

ua
ge

 s
ta
nd

ar
d

fo
r
ob

je
ct
-o

rie
nt

ed
 d

at
ab

as
es

 m
od

el
le
d

af
te
r
SQ

L
.

DD
.. VV

II ..
 EE

xx aa
mm

pp ll
ee ss

 oo
ff
dd aa

tt aa
 mm

aa nn
aa gg

ee mm
ee nn

tt
aa nn

dd
ii nn

tt ee
gg rr

aa tt
ii oo

nn
ss yy

ss tt
ee mm

ss

69

G
U
S

A
 u
n
if
ie
d
 s
c
h
e
m
a
 o
f
s
e
v
e
ra
l

g
e
n
o
m
ic
s
 d
a
ta
b
a
s
e
s
 a
n
d

a
n
a
ly
s
is
 r
e
s
u
lt
s
 f
o
r
d
a
ta

a
n
n
o
ta
ti
o
n

W
a
re
h
o
u
s
e

C
e
n
tr
a
l,

d
e
la
y
e
d

u
p
d
a
te
s

S
tr
u
c
tu
re
d
:

re
la
ti
o
n
a
l

 S
Q
L

H
ig
h

N
/A

H
ig
h

L
o
w

 A
P
I

F
re
e

T
A
M
B
IS

O
n
to
lo
g
y
-b
a
s
e
d
 q
u
e
ry

fo
rm

u
la
ti
o
n
 i
n
te
g
ra
ti
o
n
 s
y
s
te
m

w
it
h
 h
ig
h
 t
ra
n
s
p
a
re
n
c
y

M
e
d
ia
to
r

D
is
tr
ib
u
te
d
,

o
n
 t
h
e
 f
ly

S
tr
u
c
tu
re
d
:

o
b
je
c
t-
re
la
ti
o
n
a
l

 C
P
L
,

C
o
n
c
e
p
tu
a
l

Q
u
e
ry

F
o
rm

u
la
ti
o
n

M
e
d
iu
m

(m
a
p
p
in
g

o
f
re
la
te
d

o
n
to
lo
g
ie
s

)

N
/A

H
ig
h

M
e
d
iu
m

G
U
I

F
re
e

A
tl
as

In
te
g
ra
ti
o
n
 o
f
d
a
ta
 f
ro
m
 a
 s
e
t

o
f
p
re
-d
e
fi
n
e
d
 d
a
ta
b
a
s
e
s

W
a
re
h
o
u
s
e

D
a
ta
 m
u
s
t

b
e
 i
m
p
o
rt
e
d

(d
u
m
p
s
),
 n
o

a
u
to
m
a
ti
c

u
p
d
a
te
s

S
tr
u
c
tu
re
d
:

re
la
ti
o
n
a
l

 S
Q
L

H
ig
h

L
o
w

H
ig
h

L
o
w

 A
P
I

F
re
e

In
te
g
r8
 /

B
io
M
ar
t

In
te
g
ra
ti
o
n
 o
f
lo
c
a
lly
 i
n
s
ta
lle
d

d
a
ta
b
a
s
e
s
 f
o
r
d
a
ta
 m
in
in
g
 a
n
d

a
n
a
ly
s
is

W
a
re
h
o
u
s
e

C
e
n
tr
a
l,

d
e
la
y
e
d

u
p
d
a
te
s

S
tr
u
c
tu
re
d
:

o
b
je
c
t-
re
la
ti
o
n
a
l

 S
Q
L

L
o
w

L
o
w

N
/A

L
o
w

 A
P
I

F
re
e

B
io
zo
n

In
te
g
ra
ti
o
n
 b
a
s
e
d
 o
n
 a
 g
ra
p
h
-

b
a
s
e
d
 a
p
p
ro
a
c
h
 a
n
d
 a
n
a
ly
s
is

to
o
ls

W
a
re
h
o
u
s
e

C
e
n
tr
a
l,

d
e
la
y
e
d

u
p
d
a
te
s

S
tr
u
c
tu
re
d
:

h
ie
ra
rc
h
ic
a
l
/

re
la
ti
o
n
a
l

 S
Q
L

/
Q
u
e
ry
 g
ra
p
h

H
ig
h

L
o
w

H
ig
h

L
o
w

 A
P
I

N
/A

1 T
he

 C
ol
le
ct
io
n

Pr
og

ra
m

m
in
g
L
an

gu
ag

e
(C

PL
) i

s
no

w
 r
ep

la
ce

d
by

 th
e
m

or
e
ac

ce
ss
ib
le
 O

Q
L
 in

 K
2.

2 R
em

ot
e
M

an
ag

em
en

t I
nt

er
fa
ce

.

3 K
2/

K
le
is
il
ha

s
be

en
 im

po
rt
ed

 to
 fo

rm
 th

e
ba

si
s
fo

r
th

e
T
A
M

B
IS

 s
ys

te
m

.

CC
hh aa

pp tt
ee rr

 DD
.. DD

aa tt
aa
MM

aa nn
aa gg

ee mm
ee nn

tt
aa nn

dd
II nn

tt ee
gg rr

aa tt
ii oo

nn

70

T
a
b
le
 D
.V
I-
2
:
A
 n
o
n
-e
x
h
a
u
s
ti
ve
 l
is
t
o
f
g
e
l-
s
p
e
c
if
ic
 d
a
ta
 m

a
n
a
g
e
m
e
n
t
a
n
d
 i
n
te
g
ra
ti
o
n
 s
ys
te
m
s
.

S
ys
te
m
 p
ar
ti
cu

la
ri
ty

O
ve
ra
ll

in
te
g
ra
ti
o
n

ap
p
ro
ac
h

In
te
g
ra
ti
o
n

o
f
n
ew

 d
at
a,

d
at
a
u
p
d
at
e

D
at
a
m
o
d
el

M
ai
n
 q
u
er
y

la
n
g
u
ag

e

M
o
d
el

ex
te
n
si
o
n

co
st

D
at
a

ex
ch

an
g
e

S
em

an
ti
c

ap
p
ro
ac
h

E
n
d
-u
se
r

ex
p
er
ti
se

In
te
ra
ct
iv
it
y

m
ed

iu
m

L
ic
en

si
n
g
 /

d
is
tr
ib
u
ti
o
n

P
ro
te
o
m
e

D
at
ab

as
e

S
ys
te
m

C
o
lle
c
ti
o
n
 o
f
2
D
-P
A
G
E

d
a
ta
s
e
ts
,
w
it
h
 d
a
ta
 a
n
a
ly
s
is

N
o

in
te
g
ra
ti
o
n

a
p
p
ro
a
c
h
,

L
o
c
a
lly

im
p
o
rt
e
d

d
a
ta
 /

R
e
p
o
s
it
o
ry

D
a
ta
 m
u
s
t
b
e

im
p
o
rt
e
d
,
n
o

a
u
to
m
a
ti
c

u
p
d
a
te
s

S
tr
u
c
tu
re
d
:

re
la
ti
o
n
a
l

 S
Q
L

H
ig
h

N
/A

L
o
w

L
o
w

 A
P
I

N
/A

P
R
O
T
IC
d
b

L
o
c
a
l
m
a
n
a
g
e
m
e
n
t
s
y
s
te
m

im
p
ro
v
e
d
 b
y
 s
o
m
e
 i
n
te
g
ra
ti
o
n

fe
a
tu
re
s

W
a
re
h
o
u
s
e

C
e
n
tr
a
l,

d
e
la
y
e
d

u
p
d
a
te
s

S
tr
u
c
tu
re
d
:

re
la
ti
o
n
a
l

 S
Q
L

H
ig
h

L
o
w

M
e
d
iu
m

(C
V
)

L
o
w

 A
P
I

F
re
e

P
ro
te
o
m
e

W
eb

L
o
c
a
l
m
a
n
a
g
e
m
e
n
t
s
y
s
te
m

im
p
ro
v
e
d
 b
y
 m
a
n
u
a
lly

in
te
g
ra
te
d
 a
n
n
o
ta
ti
o
n
s

W
a
re
h
o
u
s
e

D
a
ta
 m
u
s
t
b
e

im
p
o
rt
e
d
,
n
o

a
u
to
m
a
ti
c

u
p
d
a
te
s

S
tr
u
c
tu
re
d
:

re
la
ti
o
n
a
l

 S
Q
L

N
/A

L
o
w

L
o
w

L
o
w

 A
P
I

N
o
t

d
is
tr
ib
u
te
d

P
A
R
IS

C
o
lla
b
o
ra
ti
v
e
 g
ri
d
 f
o
r
2
-D
E

a
n
d
 M
S
 d
a
ta
 w
it
h
 a
n
a
ly
s
is

a
n
d
 d
a
ta
 m
in
in
g
 t
o
o
ls

F
e
d
e
ra
te
d

m
e
d
ia
to
rs

D
is
tr
ib
u
te
d
,

o
n
 t
h
e
 f
ly

S
tr
u
c
tu
re
d
:

re
la
ti
o
n
a
l

 S
Q
L

a
n
d
 W

e
b

S
e
rv
ic
e
s

H
ig
h

H
ig
h

H
ig
h

M
e
d
iu
m

G
U
I
/
R
M
I

c
lie
n
ts

F
re
e

2D
/M
S
 o
f

N
P
C

L
o
c
a
l
re
p
o
s
it
o
ry
 b
a
s
e
d
 o
n

X
M
L
 s
to
ra
g
e
,
w
it
h
 n
o

in
te
g
ra
ti
o
n
 f
e
a
tu
re
s

R
e
p
o
s
it
o
ry

D
a
ta
 m
u
s
t
b
e

im
p
o
rt
e
d
,
n
o

a
u
to
m
a
ti
c

u
p
d
a
te
s

S
e
m
i-
s
tr
u
c
tu
re
d
:

X
M
L

 P
H
P

L
o
w

H
ig
h

L
o
w

L
o
w

 A
P
I

F
re
e

M
ak
e2
D
-

D
B
 II

F
e
d
e
ra
te
d
 e
n
v
ir
o
n
m
e
n
t
w
it
h

d
is
tr
ib
u
te
d
 d
a
ta
 a
c
c
e
s
s
ib
le

fr
o
m
 a
n
y
 n
o
d
e
 (
v
ia
 t
ra
n
s
a
c
ti
o
n

s
h
a
ri
n
g
)

F
e
d
e
ra
te
d

m
e
d
ia
to
rs
 +

P
a
rt
ia
l

W
a
re
h
o
u
s
e

(L
A
V
)

D
is
tr
ib
u
te
d
,

o
n
 t
h
e
 f
ly

u
p
d
a
te
s

(s
o
m
e
 d
a
ta

u
p
d
a
te
s
 a
re

p
e
ri
o
d
ic
)

S
tr
u
c
tu
re
d
:

o
b
je
c
t-
re
la
ti
o
n
a
l

 S
Q
L
 a
n
d

R
E
S
T

H
ig
h

H
ig
h

M
e
d
iu
m

(C
V
)

L
o
w

 A
P
I

F
re
e

DD..VVII.. EExxaammpplleess ooff ddaattaa mmaannaaggeemmeenntt aanndd iinntteeggrraattiioonn ssyysstteemmss

 71

Some additional systems

Many systems were announced but could not be tested due to unavailability or to

technical access problems, e.g., ProDB and BRIGEP
1
 and the CEBS SysBio-OM

2
.

The ProDB system has been initiated in 2003 by the Center for Biotechnology at

Bielefield University. Its goal is to store all relevant information about a proteome

experiment and to allow simultaneous high-throughput analysis and annotations of

mass spectra (Wilke et al. 2003). Detailed experimental parameters and acquired mass

spectra are to be captured and stored within a SQL database. ProDB should feature an

off-line/batch mode for the simultaneous analysis of mass spectra for an arbitrary

number of different pre-configured sets of parameters. It intends to offer an architecture

that supports the plugging-in of data-loading and analysis tools. An integration of

genome and transcriptome data is also announced within a system called BRIGEP
3

(Goesmann et al. 2005), based on the BRIDGE integrative platform (Goesmann et al.

2003). BRIGEP uses ProDB as one component, along with GenDB and EMMA, the

other genomics and transcriptomics plugins. Each component exhibits full-featured

analysis software for its area, ranging from raw data processing to diverse functions to

analyse the processed data. However, the ProDB and the integrative project have not

been made publicly available since their announcements in 2003.

The CEBS SysBio-OM (Xirasagar et al. 2004) provides a comprehensive and

flexible framework to store and integrate data generated from transcriptomics,

proteomics and metabolomics experiments performed on the same biological samples.

The model reflects the on-going standards of each of these underlying fields. SysBio-

OM is an object-oriented model, which can be implemented on various computing

platforms using an object-relational approach. It supports different ontologies and

guarantees a high interoperability with other systems. However, implementing the

model requires a high technical expertise. Although an open source distribution of the

package was announced in 2004, a download was still not possible by the time of the

writing of this work. Only a local data warehouse is currently available.

Interoperability of diverse integration systems

Despite the fact that so many integration systems coexist, it is often hard to achieve

simple data exchange operations between two different systems. It has therefore

become imperative to reinforce interoperability between the diverse systems. Data

standardisation efforts and initiatives in the life science fields have already started to

play an important role to resolve this issue by defining the appropriate data models,

formats and semantics in data exchange. However, collaboration between the different

communities is to be reinforced towards a more homogenised systems biology

representation, since many challenges are still to overcome in order to reach accurate

and long-term ontologies essential to support such common standards (Soldatova, King

2005; Brooksbank, Quackenbush 2006).

1 http://www.cebitec.uni-bielefeld.de/groups/brf/software/prodb_info/

2 http://cebs.niehs.nih.gov/cebs-browser/cebsHome.do

3 https://www.cebitec.uni-bielefeld.de/groups/brf/software/brigep/cgi-bin/bridge.cgi

CChhaapptteerr DD.. DDaattaa MMaannaaggeemmeenntt aanndd IInntteeggrraattiioonn

 72

*Data integration in proteomics: a three hours illustrated discussion with a Swiss-Prot colleague on how

to implement a practical distributed data integration system at SIB.

73

C h a p t e r ����

CHAPTER E. THE MAKE2D-DB II ENVIRONMENT -
THE CONCEPTS

Managing and publishing SWISS-2DPAGE exhaustively and efficiently was

the challenge we took up when we started to conceive this project. It quickly
became evident that there was a great opportunity to provide other researchers,
who are producing similar 2-DE data, with the necessary tools to also manage

and publish their data. The Make2D-DB II environment was born.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 74

E.I. Introduction

Make2D-DB II emerged from our initial aspiration to convert SWISS-2DPAGE into

a new consistent and structured format. The flat file based database (Hoogland et al.

1999) had to be remodelled into a more extensible data representation and to be

controlled by a more reliable management system. We have therefore initially focused

our attention in building a new data model that was consistent, fairly flexible and

extensible enough, but that was also able to faithfully reflect the initial database

structure. At the same time, we had to build the required basic components that were

needed to physically implement this data model, especially to deeply check and analyse

the existing 2-DE data and to correctly convert it into the new representation. We also

had to separately develop the requisite interfaces to access the data. Although these new

interfaces were adding new functionalities, and were designed differently from the

existing SWISS-2DPAGE interfaces, we chose to keep a similar look and feel in order

not to confuse SWISS-2DPAGE users.

At the same time, it quickly became obvious that there was a great opportunity to

provide other researchers, who are working with similar 2-DE data, with the necessary

tools to also manage and publish their data. The fact that the same management system

would be shared between remote databases directed the development of the project

towards the conception of a large-scale environment. A federated environment in which

resources are distributed while still being able to interact and exchange data using a

transaction sharing approach (D.II.3).

� http://world-2dpage.expasy.org/make2ddb/

E.I.1 Databases and data models

A database is a structured collection of related data with some inherent meaning. It

represents some aspect of the real world, and it is designed, built and populated with

data for a specific purpose. It can be generated and maintained either manually or with

the help of software, depending on its size, complexity and data distribution. The

software used to create, maintain and query a database is called a Database

Management System (DBMS). The more complex a database is, the more considerable

the amount of software to manipulate it.

A data model describes the structure of a specific database. It is represented by a

collection of concepts that depend on the underlying database model. Implementing

physically a database should always reflect and satisfy the model associated with it.

EE..II.. IInnttrroodduuccttiioonn

 75

E.I.2 The EBP project: interconnecting remote databases

In 1999, our group was implicated in a European Union project (European Proteome

Database of Pathogenic Bacteria
1
) implying 2-DE proteome analysis of various bacteria

by several laboratories. Our role was to propose a means of making the data produced

by each laboratory available to the other concerned laboratories. We opted against a

centralised warehouse approach, in which data would have been collected and made

available by a single group. We wanted data to be under its producers’ control

throughout the project existence. At the same time, in a federated approach, the

provided tool had to be easy to install, as it would be mainly used by scientific groups

that had no or little computer science expertise. Finally, the proposed solution had to be

based only on public domain components. The data analyser and the data model had

also to be reasonably flexible, as we inevitably had to deal with a large variety of data

semantics generated by the many laboratories involved.

Having decided not to centralise the data, we also needed an efficient way to

interconnect the remote resources using simple interoperability protocols that require

no particular skills to operate. Another feature that we considered important was to

ensure that each laboratory would be able to publish distinct sub-datasets contained

within its own project. This led us to develop an interface capable of managing

concurrently several separate local databases (sub-datasets). This same interface was

also designed to simultaneously connect to any similar interfaces, in order to send them

queries and to receive and consolidate the returned results. This was our vision of a

federated database with distributed data under the control of its owners: a global data

resource accessible from various entry points.

E.I.3 Further developments

An integrative virtual 2-DE database

When the interconnection procedures were implemented, it became obvious that

there was an opportunity to extend the interoperability between the nodes of the system,

to strengthen its reliability and to integrate other significant resources. We started to

enhance the integration of non 2-DE resources, and we reinforced the mutual awareness

between the 2-DE nodes. By means of common indexes, like the Swiss-Prot index, the

NCBI taxonomy code, the EC Enzyme number, etc., each node could link to the other

nodes, and even update its own inner data relative to the other nodes’ content. The

common indexes also allowed the system to gather relevant external information and to

ensure that this information remained up-to-date.

Consequently, the implementation of the data model and the interfaces was adapted

and reinforced by a collection of procedures to ensure an efficient interoperability and

an accurate management of the expanded system. At the same time, more stable

versions of the tool were made publicly available on the ExPASy server.

1 The European Union EBPnetwork (QLRT-1999-31536)

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 76

Model extension and 2-DE Portals

The data model, initially centred on SWISS-2DPAGE-like 2-DE data, has been

progressively enhanced and some of its elements have been made more generic. Users

could express their own annotations and their specific identification methods. External

documents, such as the various standardised PSI documents and/or user personal

documents could be included or pointed at from the database implementation. The core

data model was extended to cover proteomics analyses workflows more exhaustively,

from project definition and sample description to 2-DE separation and identification

methods.

Along with the model extension, the Web interface underwent additional

developments that made it also able to act as a fully independent Web portal to access

any number of remote 2-DE databases built with the same tool.

E.II. Objectives, constraints and initial choices

The aim of the Make2D-DB II tool is to provide a flexible and easy-to-use

distributed environment that creates, converts, publishes, maintains and interconnects

2-DE datasets. It is a tool based on a relational database management system and that

focuses on the interoperability between its components. To achieve our objectives we

had to make some initial choices and consider some requirements:

� A federated approach: The data produced should always remain the producer’s

property and should stay under his/her control. This corresponds to our vision of

a rather federated system and federated mediators with the data being distributed

and managed by its producers: a global data resource that should be

independently accessible from various entry points.

� Interconnection and interoperability: As we have decided to avoid a
centralised approach and to virtually group the remote databases into a global

one, a particular interface has to be set up. A common shared protocol will be

used for the communication between remote systems. This protocol should hold

some level of abstraction to ensure that in the long run consecutive versions of

the interface will still be able to accurately communicate between each other,

even when the database inner structure may undergo significant modifications.

� Minimal redundancy: The relational data management system offers a fully

structured data organisation. Coupled with an appropriate data conversion, the

RDBMS ensures the removal of redundancy, which is highly characteristic of

low structured data formats.

� Data conversion: A data conversion process is necessary. It should be able to
read and analyse data from a variety of text formats, e.g., from flat files, CSV

reports or XML exports.

� Data consistency: The conversion process should ensure the converted data is
correctly imported into the structured format, i.e., the relational database

EE..IIII.. OObbjjeeccttiivveess,, ccoonnssttrraaiinnttss aanndd iinniittiiaall cchhooiicceess

 77

implementation. To achieve this goal, data consistency is essential. The syntax,

the nature and the content of the data must be thoroughly checked. Whenever

some inconsistency is detected, and if it is possible, suggestions for error

correction should be proposed.

� Semantics flexibility: As we are dealing with data originating from various and

independent groups, 2-DE annotations are inevitably heterogeneous. So far, there

is no common consensus adopted by the proteomics community with regard to

data syntax and semantics, especially by the time the project has started. We, of

course, have to make some specific choices for data input. In our case, these

choices are naturally linked to SWISS-2DPAGE, as managing this database is

one of the main motivations of our project. Nevertheless, we should ensure

minimum work on data adaptation for users that would otherwise dissuade them

from using the tool.

� Model flexibility: The relational schema should be strongly adaptable for future

evolution in protein identification and annotations, and to answer specific needs

of different laboratories. Remodelling of the core schema must be easily

realisable whenever necessary. This also implies that some parts of the model

will be set up for future perspectives and expansion of the model, but will not be

necessarily activated in the early implementations. For that reason, we need a

database implementation with some object-oriented characteristics and with

extended functionalities in creating and abstracting methods. PostsgreSQL, the

public domain object-relational database management system, seems to be a

suitable choice
1
.

� An entirely free of charge package: Our tool is predominately destined to

academic groups that may not wish, or may not have the needed financial

resources, to buy costly software or to hire specialised computer science people

to perform technical installations. Thus, some software components options, such

as ORACLE RDBMS or CORBA
2
, are to be excluded. All the environment

components chosen are entirely free of charge and easy-to-install.

� Ease of use: Data input formats, the configuration process, and the installation

procedure are all simple to handle. Managing several databases and connecting to

remote resources must be easily performed. The use of interfaces to query or

manage the data should be intuitive.

� Automatic and transparent data integration: All operations related to the
integration of external data sources should be performed in a transparent manner,

with little intervention from the user, except if a critical decision is to be made.

The user should however decide when to do it, what kind of data to integrate, and

what should be the extent of data replacement to perform.

1 Details on PostgreSQL are given in Appendix V. (Relational databases)

2 http://www.omg.org/gettingstarted/corbafaq.htm, cf. glossary.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 78

� Public data and internal data: We opted for a unique installation in which both

public and internal datasets are clearly separated. The database maintainer will

then decide when to turn the entire internal data into public. Besides, we will

provide an interactive mode to restrict the visibility of some particular data

subsets to privileged users.

� Access to experimental databases, data repositories and external text
documents: Pointers to access experimental databases, such as mass

spectrometry and peptide fragments repositories, should be integrated within the

environment. Pointers should also direct to local text files or to external Web

pages when necessary, for example to access protocol documents. Use of such

pointers should closely follow the ongoing efforts in proteomics standardisation

for data exchange and publication. Provided that the structure of the accessed file

or the retrieved data is known, projections of parts of the data can be physically

imported into the main 2-DE database for quick visualisation and first-step

search queries. This can be applied, for example, to extract mass spectrometry

peak lists, identification confidence values, people to contact, etc.

� Object designation and extraction: We want to provide an intuitive way to

designate and to extract resources or “objects” using simple Web protocols. An

object can be identified over a network by its Uniform Resource Identifier (URI)
using a specific descriptive syntax called logical URLs (as opposed to physical
URLs)

1
. Objects in our case are principally proteins, gels, spots and related

identification experiments. When pointing to an object, we may also want to

specify the format in which to view or extract this object. We also want to extend

this concept, using an analogous syntax, to express queries, which would return a

list of objects satisfying the input parameters. One of the obvious advantages of

this concept is to simplify the interoperability between remote systems and to

reinforce the automatic and up-to-date integration of resources.

� Database distribution: The database content needs to be exported to guarantee
the reconstruction of the database, when necessary, on the same support, as well

as for use in alternative locations. Only data that is proper and specific to the 2-

DE database are to be exported, as the related external data can be rebuilt by

connecting to the same external resources. Exports to rebuild the database are

carried out in a SWISS-2DPAGE-like flat file augmented with some

supplementary annotations to express additional data structures that cannot be

plainly expressed in a flat file. XML exports should be more convenient for

generic distributions. An XML distribution, based on a gel/spot perspective, as

opposed to a protein perspective in a flat file, is therefore to be considered.

However, exports in XML format will be delayed until stable data exchange

recommendations from PSI for sample preparation, gel protocols and

experimental identification and analysis are validated, so as to avoid the

coexistence of potentially diverging formats, and to be fully PSI compliant.

1 cf. http://www.merges.net/theory/20010305.html

EE..IIIIII.. UUnniiffiieedd MMooddeelliinngg LLaanngguuaaggee aanndd OObbjjeecctt--RReellaattiioonnaall DDaattaabbaasseess

 79

� Backup procedures: To avoid accidental losses of data, we choose to keep track
of any erased or modified record within the database. It will thus be possible to

recover the content of the database at any specific date. Even if such operation

requires some level of expertise, it guarantees at least that no data will be

definitively lost. We will also provide an easy way to dump the 2-DE database. A

database dump contains a record of the entire table structure and the data from

the database, and has the form of a list of SQL commands.

E.III. Unified Modeling Language and Object-Relational Databases

The Unified Modeling Language

“A picture is worth a thousand words”
1
.

 "The Unified Modeling Language (UML) is a graphical language for visualizing,

specifying, constructing, and documenting the artefacts of a software-intensive system.

The UML offers a standard way to write a system's blueprints, including conceptual

things such as business processes and system functions as well as concrete things such

as programming language statements, database schemas, and reusable software

components" (from the Object Management Group and the UML consortium

definition
2
):

Modelling is the designing of software applications before coding. The purpose of

introducing the Unified Modelling Language in this document is not to depict the

capabilities of this representation language to portray data models, nor to strictly stick

to all its specifications (based on UML version 2.0). By using UML notation in our

document, we simply try to find a way of visually representing some of the concepts

and the relations that govern our implemented model. The reader is invited to read the

appendix on UML given at the end of this document (Appendix IV. UML), or to

consult it to be familiar with the adopted conventions.

The Object-Relational Database Management System

A relational database, built with a RDBMS (Relational Database Management

System), is a database with a set of relations that conforms to the relational model. The

term relational database refers to both a database's data and schema.

ORDBMS (Object-Relational Database Management System) are fundamentally

RDBMS that are extended by an object front end offering the system some object-

oriented characteristics. We have chosen the public domain PostregSQL
3
 management

system to implement our data model. More details on relational databases, on

PostgreSQL and on our motivation to use this particular system are given in Appendix

V. (Relational databases).

1 René Descartes (1596-1650)

2 http://www.uml.org

3 http://www.postgres.org

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 80

E.IV. The central Make2D-DB II data model and its implementation

Modelling should allow us to reflect data structure and relationships between the

entities. Class models consist of objects (entities) that interact by sending each other
messages. Objects include things they recognise, the attributes, and things they can
do, their behaviours or operations. The values of an object's attributes determine its

state. Objects are instances of their classes, which are themselves the blueprints for

objects. A class wraps attributes (data) and behaviours (methods or functions) in a

distinct group of entities.

A physical model reflects the real implementation of a logical conceptual model,

which itself is an abstraction of the material implementation. Both can be described in

UML by a class diagram. As far as the relational implementation is concerned, it is

technically fully described at the following address:

� http://world-2dpage.expasy.org/make2ddb/1.Readme_main.html#schema

Relations (classes) are listed in alphabetical order and are followed by the different

server-side functions or procedures (operations). The entire relational implementation

consists of four distinct schemas, in which entities are grouped in distinct namespaces:

� The core schema: This is the central schema, which contains all the data. It

regulates almost all the main relations and behaviour of the database

implementation. The core schema reflects nearly the data model in its totality

and is almost self-sufficient (though some of the required operations are defined

in the common schema). It contains all private and public data and it can only

be accessed by the database administrator and privileged users. All relations,

except the materialised views, end with the two attributes userStamp, the user

who entered the data, and update, the time of the insertion or the update.

� The public schema: The structure of the public schema is a mirror image of that

of the core schema (all relations and indexes), but without the operations, the

procedures, the associations and the constraints of the core schema. Data from

the core schema is filtered from any data marked private before being exported

into this schema. The export is regulated by a set of procedures implemented in

the core schema. An ordinary user will only access data from the public

schema.

� The common schema: This schema holds some common procedures to both

previous schemas. The core and the common schema put together constitute the

totality of the 2-DE data model, and are therefore self-sufficient. The common

schema has only a single table, with a unique tuple, that is related to the

database identity and current state.

� The log schema: The role of this schema is to register any data modification

applied to the core schema. Any tuple that is modified or deleted is reported

here. The log schema contains a copy of all the relations of the core schema,

except the materialised views. Each table has three additional attributes:

EE..IIVV.. TThhee cceennttrraall MMaakkee22DD--DDBB IIII ddaattaa mmooddeell aanndd iittss iimmpplleemmeennttaattiioonn

 81

modificationDate, stating when the modification occurred, updatedOrDeleted,

indicating whether the data was updated or deleted, and userModifierName,

giving the name of the user who made the modification. Like the public

schema, the log schema has no associations or operations.

E.IV.1 URL addresses to access a specific schema implementation

� The core schema:

http://world-2dpage.expasy.org/make2ddb/database_schema/core_schema.html

� The public schema:

http://world-

2dpage.expasy.org/make2ddb/database_schema/public_schema.html

� The common schema:

http://world-

2dpage.expasy.org/make2ddb/database_schema/common_schema.html

� The log schema:

http://world-2dpage.expasy.org/make2ddb/database_schema/log_schema.html

� The entire implementation:

http://world-2dpage.expasy.org/make2ddb/database_schema/all.html

E.IV.2 More of a physical data model than a logical data model

The PEDRo model (Proteome Experimental Data Repository) (Taylor et al. 2003) is

a proposal for a standard representation to support the sharing of proteomics data. It

aims to capture proteomics data and to make it available for browsing, searching and

downloading. PEDRo is principally a conceptual data model that inspired PSI early

stage developments in defining standards for data representation in proteomics.

In contrast to the PEDRo model, or the ongoing PSI-OMs (PSI Object Models), the

Make2D-DB II data model is not intended to conceptualise a proteomics experiment. It

rather aims at effectively implement a functional and evolutionary design built on top

of an already existent model (the initial structure deployed in SWISS-2DPAGE flat file

entries). In particular, the data model we present here is intended to publish and

interrelate 2-DE datasets. It is also meant to reflect a physical relational

implementation. Many practical aspects make it distinct from a purely conceptual or

logical model:

References to external data documents

The model is not intended to capture all details concerning the many aspects of a

proteomics experiment. It is not a Laboratory Information Management System

(LIMS); such a system would be outside the scope of our project. Specifically, we do

not incorporate all the details that can be covered by external documents, such as full

protocols or the various PSI-MIAPE documents (C.IV.8). In many cases, these

documents are referenced within a class by their location, i.e., a Web address (the URI

attribute) or a local file path (the xxxDocument attribute). However, we sometimes want

some specific data contained in an external document to be directly stored in the

relational database for efficient search or comparison purposes, e.g., by extracting all

peak list values from a mzData, a mzXML, a “dta” or a “pkl” file. Parsers are

implemented in order to extract such data, providing the documents are in a common

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 82

standard format. As the finalisation and approval of standard PSI formats are still in

progress, the use of additional parsers is expected in the future to directly integrate in

the database relevant data from an additional variety of external documents.

Denormalisation

Normalisation is a formal approach in data modeling to examine and validate

attributes with classes in the logical data model. It is defined by a set of rules that,

basically, ensures that each attribute belongs to the class to which it has been defined,

that redundant information is minimised, and that logical anomalies are eliminated.

Denormalisation is an intentional violation of the rules of normalization done to

increase performance in an implemented database and to adapt to some specific

situations where data may be incomplete. Denormalisation cannot be done without a

thorough understanding of the data and the needs of the database users. The

implementation of the 2-DE data model is made more realistic by tolerating a certain

level of denormalisation, as listed below.

Flexibility with missing data

In practice, the data needed to define all the theoretically required attributes to

instantiate a specific class is often incomplete, because only a subset or none of this

data is provided. We may sometimes want to capture the incomplete data and complete

it with “Not Defined” values for the missing attributes, even though at the conceptual

level, some of the missing attributes are not optional, i.e., they should be defined.

Development of the management and querying environment dealing with the database

implementation must be fully aware of any such concessions, in their full-context, to

correctly handle and present data to end-users. We will come across many such

situations in this section while presenting our data model. This aspect leads us to

another practical aspect, which is the shortcutting of some associations.

Practical flexibility by shortcutting some associations

We choose to concurrently establish some associations at different levels of our

model. In some situations, data is directly captured within a class that, otherwise, would

have relied on another class to indirectly “know” about this same data. For the integrity

of the implementation, we ensure that some methods guarantee that no conflicting

redundancies will arise (for example, by giving an order of preference for concurrent

associations). Let us consider the following example to illustrate such a situation

(Figure E.IV-1, a simplified situation for illustration purpose):

EE..IIVV.. TThhee cceennttrraall MMaakkee22DD--DDBB IIII ddaattaa mmooddeell aanndd iittss iimmpplleemmeennttaattiioonn

 83

Figure E.IV-1: Example of a concurrent association.

To be quite flexible, the model does not necessarily require biosource
1
 related data

when instantiating a GelData object (multiplicity of 0..1 of BioSource objects for a

GelData object). While it is appropriate to identify the studied organism at the

biosource level, the gel classes are also structured to link directly to the Organism class.

Implemented methods ensure nevertheless that no incompatibility will arise in such a

situation. For example, an Organism reference at the GelData level is overwritten by

any Organism reference from BioSource if the latter is defined.

Analogous classes

Due to the inhomogeneity of some resources concerning the same type of biological

data, we sometimes resort to employ diverse classes for the same category of

information. These classes may totally differ by their data structure, and thus are not

related by any generalisation. The two “analogous” classes Tissue and TissueSP

represent an example of this case:

� http://world-2dpage.expasy.org/make2ddb/database_schema/core_schema.html#core.table.tissue

� http://world-dpage.expasy.org/

make2ddb/database_schema/core_schema.html#core.table.tissuesp

The former is a class defining tissue names in a hierarchical manner and is not currently

populated (but which could be if a hierarchical classification of tissues was to be agreed

on in proteomics). The latter is a class that contains a plain list of tissue names as

defined by the Swiss-Prot group.

Whenever a mapping is potentially possible between two analogous classes, we create

an association class to relate them. An example is the class that maps between the

general tissue class and the Swiss-Prot tissue class.

� http://world-2dpage.expasy.org/

make2ddb/database_schema/core_schema.html#core.table.tissuesptissuemapping

1 Biological material: origin, preparation and description.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 84

Materialised views

In the relational world, a virtual view is a derived relation, which means that the

information it contains is derived from other sources. On the contrary, a materialised

view is a concrete table. Materialised views are extensively used and presented as

physical classes in our data model. They offer an efficient access for pre-formatted data

views, but at the cost of being potentially out-of-date. Due to their physical

materialisation, they can be considered in modelling as full-fledged classes with

extreme dependency on several other classes. They are accompanied in our data model

by a full collection of management operations and interfaces to facilitate their

construction and update. The protein entry views that are physically constructed from

many atomic attributes distributed all over the various classes are an example of these

materialised views.

Internal and External operations

Operations have different roles, ranging from performing batch commands,

constructing materialised views, rewriting attribute values, etc. In addition, they can

verify and apply some constraints that cannot be expressed in a relational model. Such

is the case when an attribute data domain must be restrained to satisfy a condition

depending on other relations’ content (for example, to verify that all the gels on which a

specific protein has been identified belong to the same organism). Many operations are

implemented as internal operations, or server-side functions, meaning that they are part

of the PostgreSQL implementation and that they operate from within the relational

environment. However, a number of operations are applied from outside the relational

environment. They are invoked during the data analysis process that is in charge of

checking the data before populating the database. We will refer to such operations by

external operations or external methods, and we will precede their name by the

package-visibility sign “~”.

Management classes

The model includes many classes and operations that are directly related to the

technical aspects of the implementation and to the specific management of some

particular biological data.

As already stated, due to practical considerations, the data model has not been

constructed with a top-down
1
 but rather a bottom-up approach. An internal model has

been initially built to catch all the existing SWISS-2DPAGE data representation. An

early operational implementation of the model was rapidly made available for the EBP

project. This implementation made it then possible for the project partners to share 2-

DE data. It is only with the first public version, version 1.00, that the model was

extended to include some more general concepts covering, for example, project and

sample description, as well as more details on the identifications.

1 http://en.wikipedia.org/wiki/Top-down_and_bottom-up_design

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 85

Ontology and use of controlled vocabulary

Ontology can be seen as "a formal, explicit specification of a shared

conceptualisation" (Gruber 1994), a description of the concepts and relationships

between defined objects or notions. Object representations in ontologies are frequently

used as basic concepts for object models used in database design. We may therefore

consider the definitions and the relationships of the different classes and attributes in

our model to reflect an ontology that is suitable for the purpose of our work.

Not all the ontology we are concerned with is directly expressed in the data model

implementation. An agreement to use a vocabulary respecting the assumptions

specified by an ontology in a consistent way is defined as a controlled vocabulary.
Many classes within our model make use of such a controlled vocabulary.

E.V. The main constituents of the data model

E.V.1 Schematic classification

The main constituents of the model can be schematically arranged into interrelated

packages (Figure E.V-1). This schematic classification does not reflect distinct entities

of the model, as some of these packages are rather overlapping. Some classes and

implemented interfaces may belong indeed to several of these entities. The purpose of

this separation is to give the reader a simplified picture of the aspects covered by the

model. The interrelated packages in version 2.50.2 of the tool are the following:

o Projects, Biosources and Samples: Project description, organism, study groups

and individuals, biosource (biological source), tissue, sample preparation, …

o Analytes and Separation Techniques (2-DE): Analytes, 2-DE technique, gel
protocols, dimension, images, related documents, set of gels for specific protein

entries, …

o Spots: Spots as distinct separated entities, identifiers, coordinates, physical
properties, …

o Identifications: Analyses, identification techniques, experimental results,

identified proteins, protein related annotations and comments, related

documents, …

o Protein Annotations: Identifiers, description, localisation, ontology

classification, static cross-references, …

o Cross-References: Dynamic cross-references and external databases’ metadata.

o External General and 2-DE Data: External data integration, UniProtKB data,
protein functions and classification, related remote 2-DE maps for same species

and tissue, …

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 86

o Bibliographic References: Type of publication, location, authors, … Contacts

and people can also be categorised as references.

o Materialised Views and batch operations: Consolidation of data to form non-

virtual views.

o Additional Ontology and CVs: Ontology and Controlled Vocabularies are of
different nature and intervene in many classes.

o Metadata and Technical Records: Database metadata, package version,

operations’ dates, history of data modifications, …

Figure E.V-1: Main constituents of the Data Model.

In Figure E.V-1, not only is the package classification schematic, but so are the

dependencies, in the sense that we only want for the moment to represent

interdependency at a very high level. The next sections will focus on the details of the

different constituents. This will cover the inner classes, their attributes and operations,

the associations between the classes and the related interfaces. As already stated, some

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 87

entities will appear more than once, either because they may be considered part of

several packages, or because they will be needed to explain the relationship between

one package and another.

Some conventions:

- We will explicitly list hereafter the relational Primary Key attributes for the

majority of the classes / relations. They will have a “{PK}” constraint attached

to them. Sometimes the Primary Key of a class is a combination of several

attributes. For example, two attributes (spotID and GelID) are needed to

instantiate a Spot primary key. Whenever the Primary Key is a combination, all

the attributes involved in the combination will each have a “{PK}” constraint.

However, no Primary Keys will be listed in association classes because, as far

as these classes are concerned, Primary Keys are typically a combination of

those of their associated classes.

- The relational Foreign Keys are not listed, as they are implicitly defined in the

associations drawn between the classes. Foreign keys in classes referencing

themselves (parent/child relationships) and those that are invoked in a constraint

within the class (e.g., uniqueness over several attributes or {Check constraint})

are exceptions to this convention.

- When there should be a uniqueness constraint on a combination of several

attributes, a constraint “{Unique#n}” will be attached to each attribute of this

combination. The number ‘n’ is an identifier for this particular constraint. Many

distinct combination constraints may coexist within the same class.

- Attributes will not systematically be displayed within a class, especially if they

have already been displayed in a previous figure. Conversely, some classes will

not show their attributes in detail if the classes are described in more details

afterwards.

- Some attributes have a name of the form condidion1orCondition2 (e.g.,

IsAorPartOf). They are boolean attributes that, when defined to be TRUE,

validate condition1, and when defined to be FALSE, validate condition2. If the

attribute is not defined (NULL), then neither condition is verified.

- In an inheritance relationship, we will commonly attach the suffix “Parent” to

the top most parent class name, e.g., SpotIdentificationParent. A child class in

such a relation may sometimes be referred to using the “Child” suffix, e.g.,

SpotIdentificationChild.

- Many triggers, which are activation processes that are associated with some

function or procedure and that are “fired” before or after a specific operation is

attempted on a tuple, are directly associated with the relation that contains the

target tuple, and whose manipulation causes the automatic activation of the

trigger.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 88

- A user refers to the person who uses the tool to build a database and publish

his/her data. A database user or end-user is a person who accesses this data.

The reader is also encouraged to get familiar with the SWISS-2DPAGE and its

annotations, as described in the database user manual at:

http://www.expasy.org/ch2d/manch2d.html.

E.V.2 Projects, biosources and samples

This part of the module lies on top of the other main parts that cover proteomics

analyses. Mainly centred on the biological material generation, this part acts like a

container for the analytes that will undergo the process of protein separation and

identification. For the time being, there is still a need for standard definitions in

biological material and sample reporting in proteomics. The MGED community have

already achieved significant advances in its definition of sample reporting in

microarrays experiments (Ball, Brazma 2006), and we have been partly inspired by

their representation of samples
1
. We have also some similarities with the eVOC

ontology
2
 (Kelso et al. 2003) in the definition of some of the characteristics of

biosources (that they call “samples”). An adjustment to PSI propositions
3
 has been also

partially performed, but without fully adopting all the propositions, as they are not yet

refined. Our model differs in particular from a conceptual point of view from the

unfinished PSI model in what is defined to be a biosource, a sample and an analyte.

We believe this part is temporarily incomplete as far as attribute definition and

semantics are concerned. The presented classes are the backbone for a more

comprehensive representation to cover projects, biosources and samples, and they can

be easily extended in the future. Many of these classes currently include pointers to

external documents (i.e., Web links or local files). These documents are assumed to

cover project and study descriptions, biosource details and sample preparation

protocols. The lack of a standard representation in such documents makes them not

viable to parse, which prevents their content or parts of it from being extracted and

imported into the database. Nevertheless, by linking to these documents, the database

ensures the display of a minimum supply of materials that cover such aspects of a

proteomics experiment
4
.

Figure E.V-2 shows the classes that are implemented at the project and biosource

levels, as well as their relationship. Most of the displayed attributes are self-

explanatory. This part of the schema widely includes what we have already defined as

“flexibility with missing data” (E.IV.2), meaning that many supposedly required

attributes (in a conceptual approach) are optional.

1 http://www.mged.org/Workgroups/MIAME/miame.html

2 http://www.evocontology.org/site/Main/OntologyDescriptions

3 http://www.psidev.info/index.php?q=node/90

4 The database Web interface also provides some other ways of linking and displaying related documents.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 89

Figure E.V-2: Data Model - Projects, Biosources and Samples.

We portray a proteomics investigation as part of a main project. The project is

refined into distinct studies, each describing generalities about a particular exploration.

A studied group implies a uniform grouping of subjects (organisms, individuals, cell

cultures, etc.) based on some characteristics. Biosource is the designation of the source

of the biological material specifically selected for an analysis. A full biosource

description includes both biosource information and preparation. From the biosource,

we generate the samples that will be subsequently analysed (a sample preparation

describes the generation of a sample, e.g., by an extraction process). At this stage, we

do not yet include the material “entity” that will be conditioned for a specific analysis

technique, and that will be designated by “Analyte” in the next section. In all cases, the

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 90

model makes possible the introduction of a biosource with no reference to a project or

to a study group. It is also possible to create standalone samples, with no reference to a

biosource. Projects, along with studies, may refer to a contact person. Projects may also

refer to any number of bibliographic references as well.

An alternative way to create distinct projects

The interfaces that access the database implementations are also designed to access

and query simultaneously several databases all at once. This offers the possibility to

build distinct databases, each specific to a particular project, and to present all of them

to end-users as one unique virtual database. The interfaces also include simple ways to

annotate, describe and link to external sources each database (or project) from outside

the RDBMS implementation.

The BioSourceInformation class

This class defines all the details related to both the group of subjects and the selected

biosource material. It mainly covers the organism taxonomy (by referencing a known

organism), its strain (a less common organism strain defined by the user), a tissue of

interest and the various properties related to the development and the characteristics of

the selected subjects, such as the cell line, the environment and the treatment. There

may be currently an overlap of information due to the concurrency of associations

between this class on the one side, and the StudyGroup and BioSource classes on the

other side. To overcome this inconvenience, the BioSourceInformation class may split

into two distinct classes and undergo heavy structuring of its attributes in future

refinement of the model. This will require all BioSource instances to obligatorily

reference a StudyGroup object to cover all the details of the biosource material, which

is currently only optional.

The Organism class

An organism is defined in the Organism class (Figure E.V-3) by a common name

and a taxonomic lineage, which is generally a rooted tree graph classification. The

Organism class offers also optional references to taxonomic databases, in particular to

the NCBI taxonomy database
1
. The NCBI taxonomy database is not a primary source

for taxonomic information, but rather an incorporation of taxonomic knowledge from

various sources that is used by the nucleotide sequence databases

(EMBL/GenBank/DDBJ) and UniProtKB. We would rather reference the studied

organism from the BioSourceInformation class, but for more flexibility (when no

biosource data is provided), the organism can be referenced from the Gel class, a

central class in our model. The BioSourceInformation and the Gel classes offer both the

possibility to define and to describe any particular strain originating from the

referenced species.

1 http://www.ncbi.nlm.nih.gov/Taxonomy/

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 91

Figure E.V-3: Data Model – The Organism class.

Many biologists commonly annotate their identified proteins using information that

is collected from protein knowledge databases (e.g., from the highly annotated

UniProtKB). When no protein specific to the studied organism is available, biologists

may use annotations originating from a close ortholog to the protein. In such case, the

ortholog’s organism is referenced within the model from the Entry class (the protein

entry class). The gene classes may also directly reference the organism. For many

reasons, ambiguity in gene names is frequent in genomics. One source of ambiguity is

due to the fact that a gene name, associated with an identified protein in the database,

might be shared between several species (homonymy). A direct association between the

gene and the Organism is therefore required to distinguish homonyms. In most cases,

the gene reference to an organism is inherited from the protein that is related to this

gene.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 92

The Tissue classes

The tissue classes (Figure E.V-4) have already been cited as an example of

analogous classes. The main Tissue class integrates any hierarchical tissue classification

based on a parent/child relationship (a tree graph). A child may be marked as ‘is a’ or

‘part of’ relative to his direct parent. Currently, there is no unique list of tissues shared

between the different communities. However, many specialised tissue classifications,

such as the Brenda tissue classification
1
, the eVOC ontology for human gene

expression, or the Ontology of Human Development Anatomy
2
, can be imported into

this representation, depending on the domain of interest. The only negative aspect is

that the use of different and non-mapped classifications prevents linking remote

databases based on the study of specific tissues. We propose an alternative option by

employing a common simple and limited tissue list that can be used in parallel with the

main Tissue class. This list is the tissue list maintained by the Swiss-Prot group. A plain

text list extended by tissue aliases, regularly updated and available from the ExPASy

server
3
. The Swiss-Prot tissue list contains all the tissues present in the “TISSUE” topic

of the UniProtKB/Swiss-Prot entries RC lines. It is organised in a flat file listing

sequentially tissue names and their common aliases. During the database installation,

the list is automatically integrated into the TissueSP and the TissueSPAliase relations.

Subsequent updates of the database update also the relations with the most recent

version of the list.

1 http://www.brenda.uni-koeln.de/ontology/tissue/tree/update/update_files/BrendaTissueOBO

2 http://www.ana.ed.ac.uk/anatomy/database/humat/standard.html

3 http://www.expasy.org/txt/tisslist.txt

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 93

Figure E.V-4: Data Model - Tissue and Swiss-Prot tissue classes.

Recently, the Swiss-Prot group introduced a new format for the tissue entries, which

includes a distinct accession number for each tissue and optional DR lines that cross-

reference the entries with the eVOC database. In the next Make2D-DB II release, the

newly introduced accession numbers will almost certainly replace the tissueSPname

primary key used in the TissueSP relation. As for the cross-references to the eVOC

ontology, they will help mapping between TissueSP and Tissue whenever an eVOC

classification is being used. An extra attribute defining the classification source (e.g.,

tissueClassificationSource) will be required in the Tissue relation to help performing

the automatic mapping.

All the tissue names and aliases in TissueSP, TissueSPAliase,

TissueSPTissueMapping and GelTissueSP are uppercased when stored.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 94

An example of a Swiss-Prot tissue entry:

ID Adipose tissue.
AC TS-0013
SY Adipose; Fat cell; Fat.
DR eVOC; EV:0100381; anatomical-system: adipose tissue.
//

E.V.3 Analytes, separation techniques (2-DE) and gel related data

Analytes

The Analyte class is used to represent analyte items derived from samples. They are

the objects over which separation, fractioning and analysis techniques are performed.

An analyte can also be created by combining other analytes into a new analyte. This

process is known as pooling. It is also possible to create standalone analytes, with no

reference to a sample or to other parent analytes (Figure E.V-5).

Figure E.V-5: Data Model – The analytes mechanism.

The parent/children relation of the Analyte class makes it possible to generate

several analytes from a parent analyte, to perform, for example, a different separation

technique on each of them. A method ensures that all children refer to the same sample

of their root parent. Combining several analytes into a new analyte is indirectly

implemented using an intermediate class that acts as some sort of analyte registry (the

Analysable class). All children get an analysable identifier, and those that are combined

together share the same identifier. It is then possible to track back all the original

analytes forming the combination. In order to be assigned several analysable identifiers,

an analyte should then generate an equal number of copies of itself as its own children

(fractioning, Figure E.V-6).

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 95

Figure E.V-6: Some examples of fractioning or combining analytes.

2-DE classes

The Gel class is at the centre of the 2-DE package classes (Figure E.V-7), and the

objects it instantiates - the gels - are more than essential to the database purpose. The

gels have direct associations with Organism, Tissue and BioSourceInformation classes,

as well as with the bibliographic references’ classes. These associations are shortcutting

the logical path leading from GelPreparation up to Analyte, Sample and BioSource, in

case no data is provided to follow this regular path. GelPreparation and GelInformatics

define where to find the protocols that are used to prepare the gels and to perform

informatics analyses over their scanned images. GelImage is therefore just the image

file that is displayed to the database users. The gels are also directly related to the

entries of the identified proteins they contain. This reflects the protein perspective

through which the gel images and masters are listed. The Spot class is also related to

Gel, and we will examine its properties in the appropriate spot package section.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 96

Figure E.V-7: Data Model – The 2-DE classes.

The Gel Class

In addition to the direct association with the Organism class, the Gel class may store

details about the organism strain that is being studied. This information is exploited if

no biosource information is given. The Gel class is also linked to the bibliographic

references’ package in a many-to-many association through the ReferencedGel class. A

linkage that, in theory, may be inherited from the root Project class. A tissue, as defined

by the TissueSP class, can also be attached to a gel by means of the GelTissueSP class.

We have not yet implemented a direct association between Gel and the more general

Tissue class as, for the moment, only TissueSP is populated during the database

installation process.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 97

We do not separate 1-DE and 2-DE gels in distinct classes. In our conception, the

relevant element is the identity of a container - the gel – an object with a defined area

over which the detected spots are located. Other classes are in charge of describing the

corresponding gel characteristics, preparation protocol and informatics analysis. Only

the electrophoresis dimension is reported in this class. Information about the gel

measurements is optional (the start and end pI and Mw).

Figure E.V-8: Data Model – The gel class.

The Gel class has a numerical internal identifier, but uses an additional

alphanumerical identifier: the shortName attribute. This identifier serves to designate

the gel in the database using an informative mnemonic name or joined words that may

include information about the species, the tissue, the pH range, etc. (e.g., HUMAN-

PLASMA, MOUSE-LIVER-4-7). shortName is systematically lowercased when stored

in the Gel class. A larger description of the gel is given by the optional fullName

attribute. An additional characteristic attribute, the melanieGeneratedID, holds a third

special identifier serving to unequivocally identify the gel within the virtual global 2-

DE database. The attribute name is inherited from the Melanie / ImageMaster
TM
 2D

Platinum

(cf. Figure B.III-4) 2-DE gel analysis software. This software generates a

unique key for each gel and this key can be imported into the database (as data exports

generated by Melanie can be directly read by Make2D-DB II). In the absence of this

value, the database implementation generates an equivalent unique identifier based on

the database and the gel names. When the database is updated, this generated identifier

is maintained and transmitted, even if the gel full name and the database name have

changed.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 98

To represent a set of related gels we take advantage of the parent/child relationship

between a reference gel, the parent, and a group of gels, its children. A master is a

reference gel (or reference map). In practice, it is common to merge several related gels

with an initial “arbitrary” reference gel, e.g., by gel matching; thus improving the

quality or the inclusiveness of the master gel. In its current state, the tool does not

physically implement any procedure forcing all the gels that belong to one set to

unconditionally share identical references, like having a common preparation protocol

and the same sample and biosource. We have not tested yet this concept (of many

related gels) with real datasets, and the Web query interface does not explicitly put

forward this relation. If the need to make use of such a representation arises, the

supporting management procedures should be simple to implement.

Two attributes control the privacy of a gel and its visibility to public end-users. The

showFlag attribute tells if the current state of the gel is visible or not. The other

attribute, the showFlagSwitch, is used internally by the procedures that update the

materialised views (in order to avoid unnecessary efforts when only the public schema

needs to be updated, but not the core schema
1
). The collection of procedures

symbolised by the ShowOrHideObject interface controls the access to the visibility

attributes. For example, once the visibility inversion has been applied on public data,

the showFlagSwitch is ordered to change its state. The mechanism managing the

privacy of data is also applied to many other objects within the database, as we will find

out when describing other classes, like protein entries, spots and identification results.

The Gel protocols

The GelPreparation and GelInformatics define where to find the protocols used to

prepare the gels and to perform informatics analyses over their scanned images. Both

classes have pointers to a Web URL address and to a path to a local document where

the corresponding protocols are located. preparatoinDescription and

informaticsDescription are symbolic free text attributes. They should be extended in the

future into a more detailed set of attributes, and should be populated by meaningful

data extracted from the related protocol documents. The soft attribute in GelInformatics

is also free text (for the moment). It is associated with the detection software, its

version and the used detection algorithm
2
.

1 The full algorithm is given at http://mordor.isb-sib.ch/make2ddb/pgsql/make2db_final_views.pgsql, under “Global

Updates”

2 Links to the gel protocols can also be directly given from the interface configuration files.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 99

Figure E.V-9: Data Model – The gel protocols.

Gel Image

The characteristics of the graphical image that is presented to the database users are

defined in the GelImage class. The image can be stored in the database as a BLOB

(binary large object), but due to the non-portability of such objects in PostgreSQL, we

have chosen not to rely on this attribute to physically store and load the image file. The

image is therefore better given by its URL (the location will be automatically evaluated

based on the interface configuration parameters), as well as its local system path and

filename on the server machine. The image type can be any standard graphical type

recognised by Web browsers. Images compressed in JPG format are a good

compromise between quality and file size, which is essential for a rapid transfer

through the Web. A small image, a thumbnail of the main image that is also displayed

by the Web interface, needs the same definitions.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 100

Figure E.V-10: Data Model – The gel image.

The dimension of the original image (the image used to detect the spots) is given by

two attributes: xPixelSize for the ‘x’ axis (left to right, corresponding to pI) and

yPixelSize for the ‘y’ axis (top to bottom, corresponding to Mw). The top left corner is

consequently the origin of the coordinate system, and pixels (picture elements) are the

units of measure
1
. In some cases, the original images are modified to include, for

example, a legend or a pI and a Mw axis. This results in the origin of the coordinates

system being shifted. The shift must therefore be reported in the xPixelShift and

yPixelShift attributes. It is also frequent that the image published on the Web is only a

reduced image of the original one (which may be a very large image). In such cases, we

have to provide the ratio of the dimension decrease (or increase) for both axes

independently. For example, defining xRatio and yRatio = 0.5 means that the displayed

image is half-large and half-length of the original one. For practical reasons, almost all

the GelImage attributes may be overwritten by the Web interface configuration file,

which is a simple text file that can be modified at any moment by the database

administrator.

Entry related classes

From the protein perspective, an inclusive list of the gels in which the protein has

been identified or matched can be supplied. The list is a record of the images

1 The dimension of some image types, in particular GIF format, is automatically extracted from the image file during the

installation process.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 101

(equivalent to the SWISS-2DPAGE IM list), and optionally the masters (equivalent to

the SWISS-2DPAGE MT list), of the corresponding gels.

Figure E.V-11: Data Model – Relating the Gel class to the Entry class.

The relation between the two association classes connecting Gel and Entry, namely

EntryGelImage and EntryGelMaster, can be represented by a composition relationship

(an aggregation type). This relationship may sometimes be implicit, because the

hierarchical parent/child relationship of the Gel class itself can already represent a set

of children gels related to the same parent. The parent would consequently be the

reference gel and the children the additional merged gels. Many published datasets

provide data only for master gels, without further details on the individual gels that

have been merged with the masters. Hence, for practical or for simplicity purposes, the

gel lists given by EntryGelImage and EntryGelMaster is often identical (which implies

a one-to-one, and not a one-to-many, relation between the two classes). In such a case,

the tool just relies on the EntryGelImage class when listing the gels that are related to a

specific protein. The gels are therefore considered independent from each other.

It is important to indicate that listing related gels for a protein is not, in theory,

limited to the gels in which the protein has been physically identified (or has been

explicitly matched by gel comparison). The list should also include all the gels merged

with the reference gels that are associated with the protein. As we will see hereafter, the

spots in which a protein has been physically identified (or matched) are managed by

another class, the SpotEntry class. We must ensure at least that, for a protein, the

EntryGelImage relation includes all the gels that contain the spots listed in SpotEntry

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 102

and in which the protein has been either identified or matched. This is ensured by using

an external method (implemented outside the RDBMS), and that we represent here by

the proteinIdentifiedOnGel() method responsible for checking that all such gels are

included in the EntryGelImage gel list. Another external method, the

gelsOnEntryFromSameOrganism(), verifies an additional condition that requires all

gels listed for a specific protein to belong to the same organism (a condition that cannot

be directly expressed in an efficient relational model).

E.V.4 Spots: identity and physical properties

The spots identity is defined using a spot identifier (spotID) that is unique over a

specific gel. Therefore, the formal spot identifier is a combination of both this spotID

attribute and the gel identifier (gelID). This is the relation’s primary key. The spot is

given a defined Mw value (the molecular weight, given in dalton) and a pI value (the

isoelectric point, in the appropriate range). For non-identified spots, the tool does not

require a defined value for Mw and pI. By convention, and only for non-identified

spots, Mw and pI are set to minus one (-1) when no values are provided by the user.

The ‘x’ and ‘y’ coordinates of the spot, expressed in pixels, are reported relative to the

origin situated at the upper left corner of the original analysed image of the gel. They

are not concerned by any resizing or shifting of the original image (we have already

seen that this is handled by the GelImage class). Theses coordinates typically define the

gravity centre of the spot shape or its density distribution. Optionally, the Spot class

also stores the values of the relative optical density and the relative volume of the spot.

These estimated values are expressed as a percentage of the total value of all the spots

detected over the gel. Relative optical density and volume are typically evaluated using

2-DE analysis software.

Figure E.V-12: Data Model – The spot identity.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 103

Spots should not overlap, which means that two spots belonging to the same gel

should never share the same coordinates; they should neither share the same molecular

weight and pI combination. shapeGraph is an optional list of integers that portrays the

shape of a spot using a simple direction-driven vectorial representation
1
 (relatively

similar to the principle used in the Melanie / ImageMaster
TM
 2D Platinum software).

The initial point’s coordinates are given by the shpaeGraphStart attribute. Storing

precisely the computer-detected shape of a spot is not mandatory for the purpose of the

majority of 2-DE databases. This may inflate the database storage size and slow down

the process of visualisation, which explains why we disable by default shape’s storage.

As a result, spots are simply highlighted in the gel viewer using a tiny cross over their

gravity centre
2
.

Methods

During the EBP project development phase of the tool, we have been confronted

with some datasets that lacked precise spot identifiers, e.g., PHCI-2DPAGE. This

database does not explicitly define specific spot identifiers in its distributable flat file

format (in this case, the combination of the given pI/Mw values may act as a simulated

spot identifier). Besides, some of these datasets could only provide, in addition to the

flat file entries, a separated list of spot coordinates by protein entry without establishing

any correspondence between these spots and those listed with their pI/Mw values in the

protein entry. The external method clusterSpotsIfPositionAmbiguity() has therefore

been developed to establish a correspondance between spot positions and pI/Mw values

using a simple clustering algorithm
3
. This method was also used in some early versions

of the tool when we were allowing direct data extraction from the binary annotated

TIFF images produced by the Melanie software version 2 and 3, as the extraction

process we were using was causing the same problem for spot correspondence. We

have finally decided to deactivate this clustering method by default, thus encouraging

users to systematically provide precise data. We also abandoned direct data extraction

from the binary annotated images to avoid any potential inaccuracy.

The reason for tolerating such data incompleteness was essentially to maximise the

chances for legacy data to be integrated into our new representation. This is especially

important for datasets that are incomplete and that are no longer maintained by their

producers, but still are of interest.

As for the second method, it is used to keep up with some SWISS-2DPAGE

specifity. Historically, SWISS-2DPAGE had opted to randomly generate a spot

identifier of the form ‘1/2D-nnnnnnn’ (e.g., 2D-0017PD) for each detected spot. This

identifier was unique all across the database rather than being unique for an individual

1 We propose to use values ranging from 0 to 7 and pointing to one of the 8 adjacent pixels surrounding the current

position. Zero points to the North and rotation is clockwise.

2 In order to highlight the whole shape of a spot, a C module had been previously developed by our group for the initial
make2ddb tool to work along with old versions of the Melanie software. This module can be adapted to work with the
new tool by reading shape values stored directly within the database. As we are concerned with our tool’s portability
and easiness to be installed by non-expert users, it would be preferable to first transcript the module into an interpreted
language (Perl), thus avoiding system-dependant code compilation.

3 cf. http://mordor.isb-sib.ch/make2ddb/lib2d/make2db_ASCII_TABLES.pm, under the “CLUSTER:” section

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 104

gel. We therefore included the optional insertAutomaticSpotID() method that

automatically generate unique identifiers of the same previous SWISS-2DPAGE form

for all detected spots.

E.V.5 Identifications

The spot identification sub-model (Figure E.V-13) links the spot entities to the

identified proteins by means of the SpotEntry association class. As already mentioned,

a protein entry is an instance of the Entry class, thus a SpotEntry instance associates a

specific spot with a distinct protein. We also employ the term “mapping”, a synonym

for “identification” that is traditionally used in SWISS-2DPAGE.

The same protein may be found in several spots, and several proteins may be

identified in the same spot. Two related subsystems
1
 include the experiments

performed on the spots, the experimental data, and the analysis and interpretation of

this data for protein assignment. We will call them the “Experimental Data” and the

“Spot Identification” subsystems. These two subsystems cover some predefined

identification techniques and follow a definite structure.

Figure E.V-13: Data Model – Identification data and annotations (simplified).

1 A subsystem is a category grouping several elements that have some common features, also known as a “classifier”.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 105

In addition to the predefined identification techniques, extra identification methods,

as well as any related free text annotation, description or observation, are all grouped

schematically in the “Identification / Mapping Annotations” sub-package.

Expanding the previous diagram reveals the following details (Figure E.V-14):

- The two subsystems mentioned above obey an inheritance structure. The

classes at the very top are the two superclasses SpotDataParent and

SpotIdentificationParent. Their children classes, or subclasses, are

respectively SpotDataChild and SpotIdentificationChild. Each

SpotIdentificationChild instance refers to a unique SpotDataChild instance,

and results in the assignment of a specific protein to the analysed spot. A

SpotDataChild instance may lead to different identifications, resulting in one

or several distinct protein assignments for the same spot.

- Annotations are free text and are classified into user-defined topics. They are

either general annotations and observations, or very specific identification /

mapping annotations. The latter cover all identification techniques included in

the predefined identification subsystems, as well as all additional user-defined

identification methods not belonging to the identification subsystems. A

SpotEntry instance may have several independent annotations.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 106

Figure E.V-14: Data Model – Identification data and annotations (details)

The SpotEntry association class and the 2D comments

The SpotEntry class associates spots with their corresponding entries (proteins). As

such, it includes a mechanism to show or hide any object from public end-users. In this

case, the object to hide is the association between the spot and the protein. The

mechanism is similar to the one implemented with the Gel class as described earlier.

The fragment attribute tells whether the amino acid sequence identified on the spot is a

protein fragment or an entire protein (Figure E.V-15).

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 107

Figure E.V-15: Data Model – The SpotEntry association class and the 2D
comments.

An entry may have some free text comments regarding the entire set of reference

maps available for the protein (e.g., cross-species identification comments). By

convention, and like with SWISS-2DPAGE, these comments are grouped under the

same topic keyword: “Mapping Comment”
1
. Consequently, CommentEntry2D only

points to a unique CommentTopic instance
2
.

The predefined identification subsystems

In Figure E.V-16 we present the various identification techniques that have been

chosen as subclasses of SpotDataParent and SpotIdentificationParent. For each

SpotDataChild sublass, a corresponding SpotIdentificationChild subclass exists in a

one-to-many relationship. This means that any experiment / analysis data that is

contained in a SpotDataChild instance may produce one or several different

identifications (or interpretations), represented each by a SpotIdentificationChild

instance, each in its turn leading to a distinct protein assignment for the spot.

Consequently, each experiment indirectly assigns one or several proteins to a specific

spot.

1 cf. http://www.expasy.org/ch2d/manch2d.html#Heading28

2 In addition to “Mapping Comment”, the CommentTopic class includes a list of all user-defined protein-related comment
topics, like the comment topics that are used in UniProtKB (http://www.expasy.org/sprot/userman.html#CC_line).

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 108

Figure E.V-16: Data Model –Subsystems of the predefined identification methods.

There are currently three predefined identification techniques selected in the model:

- Peptide Mass Fingerprinting (PMF)

- Tandem mass spectrometry (MS/MS)

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 109

- Amino acid composition (AAcid)

A generic unspecified technique (Other) is also part of the subsystems. The

corresponding subclasses are intended to serve as a prototype for any additional

identification technique that we may want to include in the future within our model.

To identify a protein we typically use experimental data. The experimental data is

managed in our model by the SpotDataChild subclasses. Either the data is used

entirely, or only a subset of this data is retained to predict the protein. An amino acid

composition experiment provides a set of data that is generally entirely used in the

protein assignment, while a mass spectrometry analysis provides a set of peak list

values that may be only partially retained for the identification. In both cases, the data

used or retained for the prediction is reported in the SpotIdentificationChild subclasses.

A predefined identification class may or may not have an annexed class that extends

the interpretation of the data retained for the identification. In some techniques, we

need to describe the identification with a presentation that is not based on the entire

retained data (as a whole), but based on separate subsets of this data. Each subset is

therefore an element that contributes to the final interpretation and to the assignment of

the protein. This is typically the case in tandem MS De novo sequencing, where

sequence tags are deduced from distinctive subsets of the retained peak values.

SpotIdentificationSubset is the class aggregated to SpotIdentificationChild, with the

condition that Child is TandemMS.

As already mentioned, the data retained for the identification is either the entire

experimental data or only a subset of this experimental data. A set of implemented

methods must therefore ensure that this inclusion condition is verified. We must also

deal with incomplete datasets that do not provide all experimental data, but only the

data retained for the identification (e.g., when all the masses of a PMF spectrum is not

made available, but only those assigned to a peptide). In our model, any

SpotIdentificationChild instance ideally refers to an experimental SpotDataChild

instance. In the absence of the latter, we may create it, mark it incomplete, and populate

it with the data associated with the identification.

Like many other objects in our model, any experimental and identification data can

be hidden from public access (the ShowOrHideObject interface). This also implies

hiding an association of a spot with a protein. Any experiment or identification is also

optionally linked with a bibliographic reference, as well as with a contact person (e.g.,

the experiment performer).

The parent superclasses

Some implementations of the tool, especially the most recent ones, offer additional

flexibility by allowing the instantiation of SpotIdentificationChild objects that do not

necessarily reference any SpotDataChild object. This concerns datasets that do not

contain all the experimental data. We may then avoid generating incomplete instances

of SpotDataChild. To express this flexibility, we have shown a multiplicity of ‘0..1’

between SpotIdentificationParent and SpotDataParent. (Figure E.V-17).

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 110

When an identification does not have an associated SpotDataChild object, there is a

need to explicitly define the spot identifier within the identification class itself. This

also explains why the SpotIdentificationParent has a direct relationship with SpotEntry

(spot association with proteins) rather than with the Entry class.

Figure E.V-17: Data Model – Parent superclasses of the identification subsystems.

Both superclasses have an inner method – generateSequentialChildID() - that

produces sequential identifiers for their respective subclasses. This generates distinct

identifiers across all the subclasses
1
, which is more convenient than having similar

identifiers shared between the different experiments and identifications. Having a

unique identifier across all subclasses allows the interrogation of the superclass without

explicit specification of which identification technique is involved.

The humanIdentifier attribute is an identifier given by experimentalists and data

analysers to respectively identify (or regroup) their experiments or their identifications.

1 In postgreSQL, some proprieties are not inherited, including uniqueness of attributes. For an attribute to be distinct

across all the subclasses of a superclass, we must implement a method (trigger) that ensures the attribute is unique.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 111

It can be a mnemonic word, a file name, or a folder name holding the data. It is

different from the database-generated identifier and is not unique. For example, an

MS/MS output file may contain a set of spectra, each having its own

SpotDataTandemMS instance, but sharing all the same experiment humanIdentifier.

Similarly, one identification analysis may reveal several identified proteins, thus

several instances of SpotIdentificationChild become necessary. All the instances can

then share the same humanIdentifier while having each a distinct identificationID. The

humanIdentifier attribute is optional, as such identifier is not systematically given by

users.

Both superclasses have attributes for a short description of how their procedure was

performed, and a Web location where the experimental data or the identification details

are accessible. Alternatively to a Web location, a local document is given by its file

system path (e.g., a local PSI::mzData or a PSI::AnalysisXML file). An appreciation of

the work is suggested. The appreciation is a very simple way to evaluate one’s work,

and is arbitrarily defined as a numerical value ranging from zero to ten. Although this is

only a personal and a relative appreciation, it may help to evaluate and compare the

quality of different experiments and identifications within a small group of people. The

appreciation attribute could lead to defining a more sophisticated manner of evaluating

the quality of an identification process in subsequent versions of the model.

A data displayer is an interface, often given by its Web location, which can display

the experiment data or the identification report. The displayer depends on the nature of

the identification technique. It may be sent as data input a SQL command, a file

location, or a set of GET/POST attributes/values. We may even add an additional

dataDisplayerParameter() method to formulate the displayer input parameters

independently from any external code.

In SpotIdentificationParent, the allExperiementData attribute tells whether the

identification process uses all the relevant data provided by the experiment or only a

part of it. The external method dataIsSubsetOfSpotData() verifies that any data retained

for the identification is part of the experimental data
1
. The class also holds two

additional attributes, isoform and version. We adopted the same definition of a protein

entry like in UniProtKB. This means that a protein entry in our model represents the

protein and all its isoforms, including its variants and varsplices. An identification may

match a specific isoform, which is indicated by the isoform attribute. Furthermore, we

adopted a version notation for entries. A protein entry that has been modified between

two consecutive releases of a database sees its version number raised by one. The

version attribute in the identification classes gives the entry version at the time the

identification was integrated into the database. This attribute may also serve to assign

different versions to a specific identification (for example, by reviewing a previous

interpretation).

Due to the kind of data we have to deal with (SWISS-2DPAGE and similar

databases), it was sufficient to define experiments and link them directly with spots in a

unique class. Nevertheless, it is generally more convenient to define experiments

1 We may ideally transform this external method into an internal method.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 112

independently from spots (in an Experiment class), and use a

SpotDataParentExperiement association class between Spot and Experiement, rather

than the somehow potentially redundant SpotDataParent class (Figure E.V-18).

Figure E.V-18: Data Model – SpotData as an association class between Spot and
Experiement.

Amino acid composition

Amino acid composition is stored in a list of (ordered) one-letter amino acid codes.

Each amino acid gives its composition percentage in the analysed protein:

A=12.03, B=4.12, F=1.03, G=5.84, H=0.69, I=0.69, K=4.12, L=12.71, M=2.41,

P=2.75, R=11.68, S=4.81, T=3.78, V=7.56, Y=1.37, Z=24.40

We have chosen to store such data in a row-text string (Figure E.V-19), with no

special verification of its content. Another option would have been to store this data in

a two-dimensional matrix, but we estimated that no significant overall profit would be

gained this way. relatedData may be any additional information directly related to the

experiment data or the identification process, and dataIsEntireSpotData() is an external

method, analogous to dataIsSubsetOfSpotData() and supplanting it. It verifies that the

amino acid list in SpotIdentificationAminoAcid is identical to the one in

SpotDataAminoAcid, and not only a subset of it

Figure E.V-19: Data Model – Amino acid composition subclasses.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 113

Peptide Mass Fingerprinting

The peptide peak list values of a spectrum are stored in peptideMasses. This

attribute is a two-dimensional matrix holding the masses and their intensities. In

SpotDataPMF
1
, the original relatedData attribute is labelled enzyme and identifies the

digestion enzyme. In SpotIdentificationPMF
2
, only the peptide masses that have been

retained for the identification are stored in the peptideMasses attribute
3
.

Figure E.V-20: Data Model – Peptide Finger Printing subclasses.

Tandem MS

Like in PMF, the ion masses are stored in a two-dimensional matrix. The parent

mass and its charge are stored in SpotDataTandemMS. Tandem MS is currently the

only identification technique in the model that has an identification “subset” class.

SpotIdentificationTandemMSSubset is a class that covers the peptide sequences’

identifications. An instance is created for each peptide sequence that has been deduced

from the spectrum
4
.

By analogy with dataIsSubsetOfSpotData(), the

ionMassesAreSubsetOfSpotIdentificationTandemMS() method verifies that the ion

masses stored in SpotIdentificationTandemMSSubset are a subset of those stored in

SpotIdentificationTandemMS. Whenever some ion masses relevant to the prediction of

the peptide sequences are not listed in SpotIdentificationTandemMS, the same method

duplicates them within this class.

1 The implemented relation is labelled SpotDataPeptMassF rather than SpotDataPMF.

2 The implemented relation is labelled SpotIdentificationPeptMassF rather than SpotIdentificationPMF.

3 SpotIdentificationPMF also includes some extra attributes, specific to SWISS-2DPAGE, and prefixed with a double ‘x’
(xxAc, xxDirectory, xxFile and xxProgVersion).

4 Peptide fragment fingerprinting does not need to use the peptide sequences subset class.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 114

Figure E.V-21: Data Model – Tandem MS subclasses.

Comments on the mass spectrometry subclasses

As previously mentioned, users may provide their mass spectrometry data by giving

an external link to a Web address or to any repository where their files have been

deposited (e.g., PRIDE). In this case, the PMF subclasses will still require a short list of

the identified peptide masses, while the tandem MS subclasses will not. If the user

points to a local file containing the peak lists in some common format (mzData,

mzXML, pkl, mgf, etc.), or if he/she directly provides the peptide or the ion masses and

their intensities in the input files (text or CSV), the values will be automatically

extracted and populate the mass spectrometry subclasses. This is typically convenient if

the user wishes to display and visualise his/her peak lists within the 2-DE database.

Users may even use both options, i.e., provide external links as well as local files that

include their peak lists.

As opposed to PMF, the tandem MS ionMasses attribute is optional. This is to give

users the opportunity to indicate their identified peptide sequences even if they do not

strictly provide a list of ion masses. It is then highly recommended to give at least the

location of the mass spectrometry files, in order to verify the authenticity of the

identification by end-users or reviewers.

The generic ‘Other’ subclasses

These subclasses are not specific to any particular identification technique. As

already stated, they serve as a prototype that can be refined in order to include any

additional identification technique that might need to be included in the future.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 115

Figure E.V-22: Data Model – Generic identification technique subclasses (Other).

User-defined identification methods and free text annotations

We have already illustrated (Figure E.V-14) how user-defined identification

methods and related free text annotations are implemented in our model. This section of

the model is independent from the general comments regarding the overall

identification process of all the maps available for an entry (the “Mapping Comment”,

as illustrated in Figure E.V-15).

Datasets that follow the recommendations of Make2D-DB II, e.g., the

recommendations for the spreadsheet mode
1
, offer a precise data structure that helps

users easily defining the topics and the spot assignments for their free text annotations.

Nevertheless, to also integrate legacy and less structured datasets, the data model had to

be adapted.

We have introduced the concept of 2-DE topics to be any category of annotation or

observation related to a specific spot identification process. 2-DE Topics are defined by

the user and are free text. They are stored in the GeneralTopicDefinition class. There is

however one particular topic that is fixed among all tool implementations: the

MAPPING topic. This topic groups all the various techniques used to identify the
spots. It therefore covers all the already predefined techniques listed in the

identification subsystems (PMF, MS/MS and AAcid), as well as any additional user-

defined identification method. The MAPPING topic is automatically instantiated by the

tool as the first object within the GeneralTopicDefinition class. Some other examples of

user-defined topics are listed in Table E.V-1
2
.

1 http://world-2dpage.expasy.org/make2ddb/2.Readme_preparation.html#spreadsheetsMode

2 Examples of user-defined free text topics from SWISS-2DPAGE.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 116

Table E.V-1: Examples of user-defined 2-DE topics.

TOPIC Description Annotation example

MAPPING Description of the technique

that has allowed the

identification of the spot.

Matching with a plasma

gel.

NORMAL LEVEL Description of the physiological

protein expression.

30-60 MG/L.

PATHOLOGICAL LEVEL Description of pathological

protein expressions (an increase

or decrease).

Increased during the acute-

phase reaction; decreased

during emphysema.

(NORMAL) POSITIONAL

VARIANTS

Description of physiological

polymorphisms.

30 genetics variants

known as PI alleles.

(PATHOLOGICAL / DISEASE)

POSITIONAL VARIANTS

Description of pathological

polymorphisms.

Alpha-1-antitrypsin

Pittsburgh.

EXPRESSION Description of the protein

expression modifications

including level and/or post-

translational modifications.

Decrease after benzoic

acid treatment.

Any 2-DE annotation falls under one of the 2-DE topics. Annotations are free text

data that are attached to some spots. They are all grouped in the

GeneralTopicEntryData class with no direct reference to a particular spot, which is

convenient as the same annotation may often be used to annotate several spots (Figure

E.V-23).

Figure E.V-23: Data Model – The spot annotation general topics.

Topics, which are listed in GeneralTopicDefinition, are referenced by the

GeneralTopicEntryData class that includes all the annotations. In addition to the

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 117

topicDataText attribute that stores individually the annotation texts, a mechanism that

relates each specific annotation to the bibliographic references is managed by the

parseReferenceIdentifiersFromText() external method. At this stage, we must give

some insights into how bibliographic references are expressed within the protein

entries. Like in SWISS-2DPAGE
1
, bibliographic references related to an entry are

listed sequentially within the entry, each having a specific local numerical identifier

(the ‘RN’ line). One or more reference identifiers can be integrated within the

annotation text to inform about the source of this annotation. By convention, we

integrate the bibliographic reference local identifiers within the annotation text using

brackets, e.g., “some text [1][3]”
2
. parseReferenceIdentifiersFromText() parses

consequently the annotation text to extract these identifiers and establishes the relation

with the “Bibliographic References” package (more details will be given hereafter on

how this package operates). The allReferences attribute is the list that contains the

extracted identifiers. When only one unique bibliographic reference is attached to the

entry, it is then assumed that the annotation is necessarily related to this reference, even

if the annotation does not explicitly list any bibliographic reference. In case no

reference is explicitly given in the annotation text, and that several references are

included within the entry, then the annotation is marked as ambiguous using the

ambiguousReference attribute. The user is given a detailed report by the tool listing

which of his/her annotations are ambiguous, so he/she may decide to rewrite them, or to

keep them marked as ambiguous.

Assigning annotations to spots

To establish a relationship between the list of annotations and the spots within the

different entries we make use of the SpotEntryTopicParent association class between

SpotEntry and GeneralTopicEntryData (as already shown in Figure E.V-14).

SpotEntryTopicParent is the super class of two distinct subclasses,

SpotEntryMappingTopic and SpotEntryGeneralTopic. The former references all the

annotations recognised by the tool as being directly related to a mapping

(identification) method, while the latter references all the other kinds of annotations and

observations. All annotations referenced by SpotEntryMappingTopic are necessarily

classified under the MAPPING topic (defined in the GeneralTopicDefinition class),

while those referenced by SpotEntryGeneralTopic are classified under any other topic

(cf. Table E.V-1). A variety of annotation examples, randomly chosen from SWISS-

2DPAGE, is listed in Table E.V-2. Some of these annotations contain explicit

bibliographic references as described in the previous section. Others contain indications

about the spots to which the annotations apply.

Table E.V-2: Some annotations randomly chosen from SWISS-2DPAGE.

Mapping annotations General annotations

1 http://www.expasy.org/ch2d/manch2d.html#Heading14

2 This convention is applied to any data input by users in both flat file and CSV mode, except that for the latter the user
gives a list of all his bibliographic references grouped together (not related to any entry), gives an identifier to each
reference, and uses this identifier in his annotation text. The tool applies then a transformation to the annotation text to
locally renumber these identifiers within each entry.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 118

Gel matching [1] and identified by Garrels [2] Decrease after benzoic acid treatment [3]

Amino acid composition and sequence tag

(AVVA)

Increased during pregnancy and iron deficiency

Microsequence analysis (XNSQXEXPVA) More than 20 variants

Spot 2D-001B0W: Matching with the Mouse

Liver master gel

900-4500 mg/L [1]

Spots 2D-00179*, 2D-0017BM: Peptide mass

fingerprinting [1]

Has been observed as a very early event in the

progression of colon carcinoma [2]

Legacy and unstructured annotations

We have already expressed our concern for maximising the chances of integrating

legacy datasets that are not fully structured into our new representation without needing

to rewrite the data. To achieve this goal, we had to build a model that integrates these

datasets as efficiently as it would do with ideally structured datasets. This aspect is

particularly apparent in the previous section of the model that was built to accurately

incorporate free text annotations from SWISS-2DPAGE and similar databases provided

in flat file format. Besides building an accurate model, we also had the task of reading

and interpreting free text annotations correctly (cf. annotations listed in Table E.V-2).

By parsing such texts, we can establish which spots are concerned by the annotation,

and the exact general topic or mapping topic category in question. We also had to

consider the fact that many of such annotations are not systematically written separately

from each other. We must therefore know exactly when a spot-specific annotation starts

and when it ends.

By SWISS-2DPAGE convention, a free text annotation within a protein entry is gel

or spot-specific, and is mostly written in the following way:

TOPIC: SPOT spotID#1: some annotation; SPOT spotID#2: some annotation;..

When no spots (or bands) are designated, the annotation is assumed to involve all the

spots (or bands) of the protein over the annotated gel. Several spots separated by

commas may share the same annotation. Moreover, abbreviations are frequently used,

e.g., from SWISS-2DPAGE: 2D-00179* (all spots starting with 2D-00179), 1WC* (all

spots including 1WC, e.g., 2D-001WCU). To deal with this kind of annotations, we

have built an adapted parser
1
 that is able to isolate the different annotations, recognise

their topics, and extract the list of involved spots. The parseEntrySpotsFromText()

method in Figure E.V-24 symbolises this external parser. The annotations themselves

are never rewritten.

1 cf. http://mordor.isb-sib.ch/make2ddb/lib2d/make2db_ASCII_TABLES.pm, the WRITE_2D subroutine of the

make2db_ASCII_TABLES Perl package.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 119

Figure E.V-24: Data Model – spot general and mapping annotations.

The mapping annotations

The mapping annotations, covering the various methods used to identify the spots,

and falling under the MAPPING topic, are managed differently from the general

annotations. Besides having their dedicated SpotEntryMappingTopic subclass, which

links the annotations stored in GeneralTopicEntryData with the spots, they integrate a

mechanism to classify the mapping methods into subtopics.

The generalTopicIDisMapping() method in Figure E.V-24 ensures that the mapping

annotations point to the MAPPING topic reference that is defined in

GeneralTopicDefinition.

 An autonomous class, MappingTopicDefinition, contains all the mapping subtopics.

These subtopics include the predefined techniques listed in the identification

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 120

subsystems and their subsets
1
, in addition to the additional user-defined identification

methods. The mappingTechnique attribute acts as an identifier and as an abbreviation

for the identification method (e.g., “PMF” for peptide fingerprinting).

The class includes three additional attributes: a short description of the identification

method and, more importantly, two attributes, containingREGEXP and

excludingREGEXP, which are in charge of assigning mapping subtopics to the different

mapping annotations. containingREGEXP is a user-defined regular expression
2
 that,

when found in an annotation, associates the corresponding mapping subtopic to this

annotation. excludingREGEXP removes this association if the regular expression given

by this attribute is found within the annotation. Regular expressions are case-

insensitive.

The tool proposes by default a pre-configured set of mapping topic definitions

adjusted for SWISS-2DPAGE (Table E.V-3). These definitions can be easily altered or

extended by users to comply with the syntax of their annotations. Besides, the

procedure may also serve to map between personal annotations and any agreed-on

controlled vocabulary that defines the names of the identification techniques.

Table E.V-3: Mapping topic definitions currently in use by SWISS-2DPAGE.

mapping

Technique

techniqueDescription containingREGEXP excludingREG
EXP

N/A _Not_Defined_Method_ _Not_Defined_Method_

Aa Amino acid composition Amino acid composition

Co Comigration Comigration

Gm Gel matching Matching|Identified on [1-2]-D

Im Immunobloting Immuno

MS/MS Tandem mass spectrometry Tandem mass spectrometry

Mi Microsequencing Microseq|Internal

sequence|Sequence tag|Tagging

PMF Peptide mass fingerprinting Mass fingerprinting|Mass

spectrometry|PMF

Tandem

PeptSeq Peptide sequencing Peptide sequencing

An annotation may refer to several mapping techniques simultaneously. To avoid

redundancy, we group all the recognised mapping methods subtopics in an ArrayList

data type attribute: the array attribute in SpotEntryMappingTopic. For example, Table

E.V-2 contains a mixed annotation: “Amino acid composition and sequence tag

(AVVA)”. Based on the mapping topic definitions given in Table E.V-3, the

mappingTechnique array attribute will be “{Aa, Mi}”.

1 Peptide sequencing has therefore its own mapping subtopic that is independent from tandem MS.

2 http://en.wikipedia.org/wiki/Regular_expression

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 121

Note that we did not purposefully set up a relational association between the

SpotEntryMappingTopic and the MappinTopicDefinition classes via the

mappingTechnique attribute for two reasons. The first one is purely technical. A

RDBMS does not allow a direct referencing between an ArrayList data type and an

atomic data type (dimensional data type incompatibility). The second is a practical

reason. An annotation may be modified by users at any moment. The modified content

must be evaluated to define the corresponding mapping method subtopics. For these

reasons, we use the MappingTopicVerification interface that evaluates on the fly which

mapping subtopics correspond to the current content of the annotation. Such an

operation is impossible with a rigid relational association.

E.V.6 The protein annotations and related classes

We have so far extended the representation of three distinct entities - or objects –

central to our data model: the gels, the spots and the identifications. The fourth central

entity in our model is the protein. Identified proteins are defined by the Entry class. In a

2-DE model where data is commonly presented to end-users from a protein perspective,

the choice of using the term “entry” for the name of the main protein class seems

justified. The Entry class is the most referenced class within our data model.

Among the several classes directly related to the Entry class, some are directly

associated with the protein identity. Figure E.V-25 illustrates these classes, along with

the central Entry class.

Protein identity

A protein has a stable unique identifier: the AC. It is commonly referred to as the

entry primary accession number. Accession numbers are defined by the user and should

be unique within a database. They can be up to 16 characters long. Typically, users

would use the UniProtKB identifiers, as well as the less stable NCBI GI identifiers. The

tool recognises UniProtKB AC patterns. If a protein with an identical accession number

(primary or secondary) exists in UniProtKB, then many of the protein annotations

found in UniProtKB will be automatically integrated into the local database
1
. Entries

may have several accession numbers. When two entries merge, only one of their

primary AC numbers remains the primary AC number of the merged entry. The other

AC becomes a secondary accession number. On the contrary, if an entry is split into

two or more new entries, each entry acquires a new primary AC. The entry’s original

AC becomes a secondary accession number in all the newly created entries. Secondary

accession numbers may therefore refer to more than one entry. They are stored in the

SecondaryAC class where the secondaryAC attribute has no uniqueness constraint.

Some other attributes in Entry have similar definitions to the ones given in SWISS-

2DPAGE and UniProtKB user manuals
2
. ID (IDentification) is generally a mnemonic

name to identify a protein, although it is not necessarily a stable identifier like AC. If

not defined, ID will be assigned the current accession number. entryClass is a means of

1 Cross-referencing an entry to UniProtKB gives the same result, independently of the user-defined local accession

number.

2 http://www.expasy.org/ch2d/manch2d.html and http://www.expasy.org/sprot/userman.html

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 122

informing about the status of the entry, for example SWISS-2DPAGE uses the status

“STANDARD” for data that are complete, and the status “PRELIMINARY” for data

that are not. method is an optional attribute indicating the primary separation/analysis

technique used to identify the protein, and it defaults to “2DG” in 2-DE datasets. The

extractEnzymeCodeFromDE() method extracts the EC enzyme commission codes from

the description attribute and stores them in the EnzymeNomenclature class (an

operation that is performed each time the protein description is modified or

automatically updated); the description attribute gives general descriptive information

about the protein.

The Entry class also includes a reference to the organism corresponding to the

protein identified against a search database. In our representation, we consider this

organism independent from the original studied organism, although by default, and in

the majority of cases, they are the same. The Difference may originate from the fact

that the protein from the studied organism is not present in the search database, and that

the assignment of the identified spots has been made on a close ortholog.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 123

Figure E.V-25: Data Model – The protein Entry class.

A protein entry is conceptually a physical object comparable to gels or spots. It may

be visible or hidden from end-users. The ShowOrHideObject interface is therefore also

applicable to proteins and acts on the central Entry class.

Keywords

The keyword attribute is a list of functional, structural or location categories

separated by semicolons. Users may define these keywords themselves, or let the tool

automatically integrate the keywords corresponding to their protein from both manually

curated and electronically assigned UniProtKB keywords
1
. The Gene Ontology

1 http://www.expasy.org/cgi-bin/keywlist.pl

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 124

Annotation project GOA
1
 aims to map gene ontology (GO) terms with UniProtKB

keywords. We will illustrate hereafter the gene ontology classes related to the Entry

class, and we will see how this mapping could be of interest to extend data integration

within the 2-DE databases.

Creation release and entry annotation changes

 The Release class is an independent class containing the release numbers of the

successive publications of the database, along with their corresponding dates. A

database release is formally made of a release number (releaseNum) and a sub-release

(subRelease), e.g., Rel. 1.1 or Rel. 15.12. The releaseCreation and the

subReleaseCreation attributes within the Entry class refer to the release number when

the entry was first added to the database. A newly added entry is assigned to the next

database release before being published. SWISS-2DPAGE, as well as UniProtKB,

formerly included indications about database releases for annotation changes in entries.

We have replaced this representation by entry version numbers similar to the ones

currently used in UniProtKB
2
. The entryAnnotationChanged() method is meant to

verify whether a relevant modification of the protein annotations has occurred, in which

case the entry version will be automatically increased by one in the next database

release. The entry version mechanism will be detailed further in a following subsection.

Entry checksum

A Make2D-DB II user may need to apply a major update to his/her database

installation, either to upgrade to a new version of the tool, or to add a substantial

amount of data. In both cases, the tool erases the old database installation to rebuild a

new database. Protein entries may be modified by adding some new data, for example

some additional gels or spots. Even without adding any new data, the protein entries

may still undergo modifications during the update process, since any database update

also implies a significant amount of data integration from external resources. Thus, it is

important to be able to compare the content of each protein entry before and after the

update process, so that the tool can decide whether an entry version increase is

necessary. One manner to guarantee a simple comparison is to use cyclic redundancy

check (CRC)
3
 over the entry content. For optimisation purpose, we chose to include the

computed CRC values within the database implementation, so that they are not

repeatedly computed each time a comparison is required outside from the RDMBS

implementation. The entryCheckSum attribute holds the values computed by the

evaluateEntryChecksum() external method
4
.

1 http://www.ebi.ac.uk/GOA/

2 http://www.expasy.org/sprot/userman.html#DT_line

3 http://en.wikipedia.org/wiki/Cyclic_redundancy_check. The algorithm to compute the Cyclic Redundancy Check
CRC64 is described in the ISO 3309 standard. The generator polynomial is x64 + x4 + x3 + x + 1.

4 http://mordor.isb-sib.ch/make2ddb/lib2d/CRC64.pm, courtesy the Swissknife team of the Swiss-Prot group in
Geneva.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 125

Gene names

The geneNames attribute within an entry is the string of protein-related genes and

their details as presented to the end-user. It is mostly based on the Gene subsystem that

structures independently, and in depth, all the genes contained in the database. In order

to evaluate the geneNames attribute, the Entry class can access the Gene subsystem

(using the symbolic synchroniseGeneNamesWithGeneSubSystem() external method),

but is not forced to do so, as geneNames can be also defined independently from the

Gene subsystem. More details will be given hereafter.

Theoretical pI and Mw

We have included a class that stores theoretical pI and Mw values for the proteins.

Entry is related to EntryTheoreticalpIMw with a multiplicity of one-to-zero or many.

We may therefore list many isoforms, fragments or modified proteins regarding a

specific protein entry. The Mw is directly evaluated according to a protein sequence,

while the pI value can be estimated by means of some algorithm that should be

described in algorithmOriginAndVersion. Using EntryTheoreticalpIMw is optional; the

tool does not have a procedure to automatically populate the corresponding relation.

Entry comments

We have already shown a relationship between Entry and CommentEntry2D. In

reality, the relationship is a more general relation between Entry and

CommentEntryParent. The latter is a parent class for two children subclasses,

CommentEntryFreeText and CommentEntry2D, like shown in Figure E.V-26. The

CommentTopic class classifies a list of user-defined protein-related comment topics,

like the comment topics that are used in UniProtKB
1
.

Figure E.V-26: Data Model – The entry comments.

1 http://www.expasy.org/sprot/userman.html#CC_line

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 126

The Gene subsystem

The Gene subsystem (Figure E.V-27) encloses all the information related to the

genes coding for the proteins of the database. A Gene object in the model is composed

of one “official” gene name and/or one or several ordered locus names (i.e., OLN or

ORF numbers) and/or one or several ORF (open reading frames) names. Ordered locus

names are names used to represent ORF in a completely sequenced genome or

chromosome, while ORF names are names temporarily attributed by a sequencing

project to an ORF
1
. A gene “official” name may have several synonyms. In addition,

each Gene object is linked to a specific organism, thus overcoming any homonymy

ambiguity with gene names. In most cases, the gene reference to an organism is

inherited from the protein that is related to this gene within the database (or in case of

splicing, from a set of proteins, assuming that only one organism is concerned).

During the database installation process, genes are extracted from the protein

annotations and/or from external data (UniProtKB). The

synchroniseGeneNamesWithGeneSubsystem() external method symbolises the

extraction of the gene data and its reorganisation into the subsystem. As the database

content is continuously updated with regard to the external data, the geneNames content

in Entry may change. By default, we do not continuously synchronise the new content

with the Gene subsystem, and only the new content is displayed to end-users. Users

who wish to personally manage the gene annotations of their databases may be

interested in using the Gene subsystem more extensively.

1 http://www.expasy.org/sprot/userman.html#GN_line

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 127

Figure E.V-27: Data Model – The Gene Subsystem.1

Gene ontology classification

The GOA project
2
 (Camon et al. 2004) aims to “provide high-quality Gene Ontology

(GO) annotations to proteins in the UniProt Knowledgebase (UniProtKB) and

International Protein Index (IPI) and is a central dataset for other major multi-species

databases; such as Ensembl and NCBI”.

The GO classification (C.III) is presented as a graph that is subdivided into three

categories: biological processes (e.g., protein folding
3
), molecular functions (e.g.,

transferase activity
4
) and cellular components (e.g., mitochondrion

5
). The gene

ontology classification subsystem in our model is based on the mapping between the

GO terms on the one hand, and the UniProtKB entries, keywords annotations
6
 and

1 The Gene subsystem was slightly different until Make2DB-DB II version 2.50.2 included, where the GeneName class was

at the top of the subsystem.

2 http://www.ebi.ac.uk/GOA/

3 http://www.ebi.ac.uk/ego/DisplayGoTerm?id=GO:0006457

4 http://www.ebi.ac.uk/ego/DisplayGoTerm?id=GO:0016740

5 http://www.ebi.ac.uk/ego/DisplayGoTerm?id=GO:0005739

6 http://www.geneontology.org/external2go/spkw2go

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 128

enzyme commission codes on the other hand. This mapping is reflected in the 2-DE

database through the EntryGeneOntology class
1
, which links the entries to the Gene

ontology subsystem. This can be achieved by extracting the GO terms matching the

UniProtKB entries or their keywords, as well as any explicit GO cross-references and

enzyme code annotations.

Figure E.V-28: Data Model – The gene ontology classification.

Details of the system are depicted in Figure E.V-28. The three gene ontology

categories are subclasses of the superclass GeneOntologyParent. The parent class

includes a detailed description of the GO terms
2
: the GO term identifier, its descriptive

name, definition and synonyms, as well as the date of the last update of the GO term.

1 Until Make2D-DB II version 2.50.2, the Gene ontology subsystem had a many-to-one association with Entry, which has

been replaced by a many-to-many association, via an association class, to eliminate redundancy.

2 e.g., http://www.ebi.ac.uk/ego/DisplayGoTerm?id=GO:0006525

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 129

The hierarchy of the term is limited to its direct parents and direct children identifiers
1

(goParents and goChildren attributes). Gene ontology data is easily accessed through a

variety of available interfaces and web services. The mappedEnzymeClassification

attribute contains the enzyme commission codes that are mapped to the GO term, while

the mappedTransportClassification is related to the Transporter Classification (TC)

system (Saier, Jr. et al. 2006). TC is a IUBMB approved classification system for

membrane transport proteins. It is analogous to the enzyme commission system for

classification of enzymes, but incorporates phylogenetic information additionally. TC

codes
2
 can be extracted from the comment annotations (the CC lines) of a UniProtKB

protein.

The mapping between the UniProtKB keywords and the GO terms can be included

into the RDBMS implementation, although this is not necessary, as the mapping can be

easily managed from outside the relational system. Currently, no such Keyword2GO

relation is physically implemented in the tool.

During the development phase of the tool, the mapping between GO and UniProtKB

entries and keywords was not satisfactory. The use of the Gene ontology subsystem

was therefore delayed. We believe that taking advantage of the ontology classification

would represent a significant gain in data interpretation and data integration between

distributed 2-DE databases. This would expand the prospect of linking related proteins,

not only within one 2-DE database, but also across several remote 2-DE databases. One

application is to know which related proteins implicated in a pathway have been

identified by other users in order to perform quantitative comparison analysis.

Currently, the UniProtKB mapping with GO terms is becoming increasingly approved,

and we estimate that one of the most important future developments of the tool is to

fully exploit this part of our model.

 Bibliographic references

The Entry class is linked to the bibliographic references’ package in a many-to-

many association through the ReferencedEntry class. Bibliographic references must

include all publications that describe the experimental and identification processes that

led to protein identification. Whenever several publications are available for the same

entry, the 2-DE experimental annotations within the entry must include local references

to the appropriate publications. This explains the fact that bibliographic references

within an entry have local identifiers (corresponding to the SWISS-2DPAGE ‘RN’

line). The RNdisplayedValue attribute in Figure E.V-29 represents the local identifier of

the bibliographic reference within a specific entry.

1 For a more extended hierarchy, it would be more reasonable to access the GO database on the fly, rather than saturating

the 2-DE database with a huge amount of gene ontology classification.

2 e.g., http://www.tcdb.org/tcdb/index.php?tc=1.B.3.1.1&Submit=Lookup

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 130

Figure E.V-29: Data Model – Bibliographic references for Entry.

Entry versions

In addition to the creation date, an entry displays information about the last time it

has been subject to a relevant modification. This information is a combination of a

sequential version number and a date, and it is presented separately for 2-DE related

data and for general protein annotations (e.g., http://www.expasy.org/swiss-

2dpage/ac=O00299). The EntryVersionParentClass in Figure E.V-30 is the superclass

of two distinct subclasses, EntryVersionGeneral and EntryVersion2D, which manage

general and 2-DE entry versions independently from each other. The classes include the

current version for each entry and the date of the last modification. The date does not

reflect the moment at which the modification has been carried out internally, but rather

the moment when the database administrator decides to consolidate his/her changes in

order to publish a new database release.

Entry versions are automatically managed by the system using a mechanism as

follows: a signal tells the entry version classes if a relevant annotation has been

modified, added or erased. This automatically triggers the annotationChanged boolean

attribute to be set to ‘true’. An increase of the version number and an update of the

version date are performed only when the database administrator decides to make the

changes permanently available and to update the materialised views that are presented

to end-users. This operation is typically executed before publishing a new database

release. annotationChanged is then set back to ‘false’. Optionally, the materialised

views of the protein entries have to be reconstructed at this point and may be limited to

the modified entries only.

We have selected a set of attributes that, when changed, cause an entry version to

increase. The content of some of these attributes may not be part of the materialised

views of the entries as presented to end-users. For example, up to Make2DB-DB II

version 2.50.2, the keywords were not displayed within the protein entries, although

they were among the set of attributes that could cause an entry version to increase. If

the administrator prefers to strictly limit entry version modifications to changes that are

visible in the entry materialised view, an alternative procedure may replace the standard

one: the use of the annotationChecksum attribute. This attribute contains the computed

CRC value of the entry text (separated into general annotations and 2-DE annotations)

in its last publication. The idea is that when the entries are reconstructed, it is possible

to compare their new CRC values with the older ones and to modify the entry version

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 131

number if they differ. However, this method requires more computer resources and

computational time, since before each new database release the CRC values have to be

computed over the entire set of entries. A better solution, to strictly limit entry version

modifications to visible changes, would be to combine the two mechanisms. This

means that only entries with an annotationChanged set to ‘true’ should undergo the

CRC verification to decide whether their version number should be increased.

Figure E.V-30: Data Model – The entry version management.

Initialising entry versions for a new dataset is trivial, as all versions are set to one.

However, converting databases that have an earlier publication history in some other

format, like SWISS-2DPAGE, into our system is less evident. We resort to generate an

initial version number equal to the database release number when an entry was last

modified. This guarantees the consecutiveness of versions, but may result in an entry

version number higher than the number of times the entry has effectively undergone a

modification in the previous releases of the database old format
1
.

1 For SWISS-2DPAGE, it was still possible to track entries’ history by analysing all the earlier flat file releases of the

database. However, we could not generalise this process to other datasets that are not under our control

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 132

Archiving modified entries

In addition to plain database exports in text format as the standard way to archive the

database entries on a regular basis, we have also recently opted to slightly expand our

implementation to include within the relational database an archive of entries in their

older versions. This new feature will be available in the most recent version of our tool

that is being finalised at the time of writing
1
. End-users will then be able to easily

display an entry in any of its previous versions and to track all modifications it has

undergone.

Figure E.V-31: Data Model – Archiving modified entries.

The process is quite simple. The entries, which are stored as materialised views in a

dedicated relation, are cloned into a similar archive relation whenever their annotations

change. The cloned relation has two extra fields, general and 2-DE annotation versions,

as well as the related dates. Primary accession number modifications (due to a possible

merge or split) are accurately managed.

Cross-references of protein entries

Protein entries are cross-linked to external data by means of cross-references. Cross-

references are URL pointers that direct the end-user to additional resources relevant to

an entry. These resources vary in number and in nature between the different entries.

They can be DNA or amino acid sequence databases, domain classification, structure or

pathway databases and, evidently, other 2-DE PAGE databases where the same protein

has been identified.

We may distinguish between static cross-references that are explicitly given by the

user, and dynamic cross-references that the system automatically incorporates, manages

and verifies their relevance and current accessibility. Some static cross-references are

also controlled by the system to ensure that they are up-to-date.

A cross-reference between a local entry and another resource necessitates, besides a

clear definition of the remote database, an unambiguous primary identifier (or pointer)

to the information entry on the remote database. Other additional identifiers may be

needed to complement the information given by the primary identifier
2
 (e.g., specify

1 Most probably version 2.60.1

2 http://www.expasy.org/sprot/userman.html#DR_line

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 133

the species for a given gene name). The EntryXrefDbParent class in Figure E.V-32 lists

up to four attributes to cover all potentially needed identifiers for a specific cross-

reference. This class is an association class between Entry and the XrefDbParent class;

the latter is the place where metadata about the remote databases is defined (e.g., their

location, precise name, etc.). Using a maximum of four atomic attributes for identifiers

is sufficient; we do not need to insert an additional intermediate class that may

theoretically contain any indeterminate number of identifiers.

Figure E.V-32: Data Model – Cross-references of protein entries.

XrefDbParent, as its name suggests, is a parent class of two children subclasses:

XrefDb and XrefDbDynamic. XrefDb is the subclass where databases that are explicitly

given in the cross-references provided by the user are listed. This class also contains a

set of additional resources that we will describe in the next section. The other subclass,

XrefDbDynamic, is exclusively managed by the tool. The user may request to

automatically establish cross-references to other remote 2-DE databases (built with the

same tool); information about such databases is integrated and kept locally only if these

remote 2-DE databases are Web-accessible at the time of the request. Since

XrefDbParent is a superclass of two subclasses, the association class

EntryXrefDbParent is, in turn, also a super class of two subclasses relating Entry with

the cross-reference database subclasses. Similarly, EntryXrefDb lists the explicit user-

defined cross-references, while EntryXrefDbDynamic those that are not considered

“permanent”. We ensure that non-permanent cross-references are not redundant with

the others. If the user defines a cross-reference to a remote 2-DE database, his/her

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 134

cross-reference will become permanent. The activated attribute in the EntryXrefDb

classes has therefore the role of temporarily deactivating the display of such cross-

references to end-users if the remote databases are temporarily inaccessible. Only

changes of identifiers, a deletion or an insertion in entry explicit cross-references will

imply an entry version modification.

The tool has the ability to switch cross-references from UniprotKB/TrEMBL to

UniProtKB/Swiss-Prot when the referenced TrEMBL entry is integrated into Swiss-

Prot. If a UniProtKB referenced entry is merged with another entry, the tool updates the

cross-reference identifiers to suit the new UniProtKB accession number. In case of a

split of a cross-reference entry into several new ones, the tool retains only the entry that

belongs to the same species of the gel containing the protein. In case no correspondence

between species is detected, the user is invited to choose which one to retain
1
.

Cross-reference administration in Make2D-DB II is slightly more complex than

described until this point. The next section gives more details on the subject.

E.V.7 Cross-references’ management

To be able to uniformly express, homogenise, and verify Web-accessibility of cross-

referenced resources, we needed to couple our distributed management process for

database metadata - to be used by the tool users - with a centrally harmonised and semi-

controlled management process. The first step was to tune this metadata to the different

databases available from the ExPASy server, especially those shared between the main

index databases, UniProtKB/Swiss-Prot and UniProtKB/TrEMBL, given their

relevance to our work, as well as SWISS-2DPAGE and any other non-ExPASy 2-DE

PAGE database built with our tool. We have therefore proposed to centralise this

information in a local text document to be shared by all the ExPASy databases

(DbCrossRefs.txt). For high consistency of data, an autonomous module has been

conceived to manage the document content: the DbCrossRefs Perl module, which is

also distributed with the Make2D-DB II package:

� http://world-2dpage.expasy.org/make2ddb/DbCrossRefs.html

The module provides methods to:

- Create, manage and read files listing cross-reference database links in both text

and DBM format.

- Check the availability of the links.

- Export and import files.

Databases are exhaustively listed by their common name, the URL to display a

cross-reference, and an optional comment /description text. The URL contains

placeholders (sequential numbers between brackets) where the given identifiers of the

1 Choosing one entry among several split ones is currently only implemented for the database installation process, but not

for the administration Web interface.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 135

cross-reference will be inserted on the fly
1
. This document is continuously maintained

by the Swiss Institute of Bioinformatics in Geneva, and is consequently an appropriate

master document for the Make2D-DB II users. The document is distributed with our

tool, and is transparently updated on the remote 2-DE PAGE database installations.

Figure E.V-33: Data Model – The Cross-reference database classes.

XrefDb class is populated with databases that are extracted from the protein

annotations and the central text document available from the ExPASy server.

Additional registered Make2D-DB II databases are also included, but only if they are

accessible when the system is updated (XrefDbDynamic). XrefDB contains a set of

permanent databases that are predefined by the tool. This set includes the protein main

index databases (UniProtKB) and some other major resources that are essential to the

database implementation. Taxonomy and bibliographic databases are also included, as

organisms and bibliographic references have as well cross-references to external

resources. In practice, it is also possible to automatically establish cross-references

between local gels and gels that are published in other remote 2-DE databases built or

that are compatible with our tool. In order to achieve meaningful gel cross-referencing,

we will first need a significant number of 2-DE databases to become public. Gel cross-

references will be based on common species and/or tissues.

1 http://mordor.isb-sib.ch/make2ddb/text/DbCrossRefs.txt

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 136

Attributes of the XrefDb classes are given in Figure E.V-33. Beside the database

identifier and common name, a short description of the database can be given (or read

from the DbCrossRefs central list). URL is the main server address where the database

is located, while the displayerURL is the URL address of the viewer that will display

the cross-referenced data. displayerURL and displayerParameters are given in the same

syntax as the one used in the DbCrossRefs central list.

Figure E.V-34: The mechanism of integrating and managing cross-reference
metadata.

The tool, which integrates locally data from UniProtKB annotations, adds to the

local entries the list of cross-references given to the corresponding UniProtKB entries

(if a mapping between local entries and UniProtKB entries is possible). UniProtKB

cross-references displayed from within the local 2-DE databases will only rely on the

central DbCrossRefs document. A simple description of the cross-reference

management, intended to the tool users, is given at:

� http://world-2dpage.expasy.org/make2ddb/1.Readme_main.html#cross-

references

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 137

An overview of the mechanism of integrating and managing cross-references after the

local 2-DE database has been installed is given in Figure E.V-34.

E.V.8 External general and 2-DE data

Data integration in Make2D-DB II is performed during the 2-DE database initial

installation, and it continues to be performed throughout the database lifetime by means

of the administration interface. The integration includes data imported from the

ExPASy and the EBI servers, from UniProtKB, from NCBI / NEWT taxonomy and

from an unlimited number of remote 2-DE databases built with our tool. The number of

resources can be extended to include a variety of other relevant data, like, as already

mentioned, the GO classification. Data integration is controlled by users through

configurable parameters that define the level of integration.

We have already come through several classes that are dedicated to external data.

The XrefDbDynamic class, responsible for storing metadata of remote 2-DE databases,

and the EntryXrefDbDynamic class that establishes dynamic cross-references between

remote 2-DE entries and local entries, are both part of the data integration system.

TissueSP and TissueSPAliase classify tissue names as defined and imported from

Swiss-Prot. The Gene system, the Gene ontology classification system and the

organism classification get essentially their content from external resources. Other

classes that include or rely on external data are listed in this section.

The main index: UniProtKB protein annotations

Besides being the main index
1
 of protein entries in our tool, UniProtKB is a resource

for protein annotations. A dedicated class, ExternalMainXrefData, contains UniProtKB

annotations for the proteins of the local 2-DE database if these proteins are mapped to

UniProtKB. The class (Figure E.V-35) lists a number of selected annotations: the

protein identity (accession numbers, ID, description, enzyme codes, the general and

sequence versions and their corresponding dates), but also the list of keywords, gene

names and the organelle / plasmid annotations (the ‘OG’ line
2
). Most importantly, the

complete list of explicit cross-references to relevant resources is also incorporated. The

UniProtKB release version and the date of the extraction are included within the class.

An additional attribute, spOrTrembl, tells if the UniProtKB entry is a Swiss-Prot entry

or is still a TrEMBL entry.

1 The index that allows unambiguous designation of individual proteins.

2 http://www.expasy.org/sprot/userman.html#OG_line

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 138

Figure E.V-35: Data Model – The main index / UniProtKB protein annotations.

UniProtKB annotations can substitute local entry annotations upon user’s request.

The user chooses a level of substitution, which can range from partial to full

replacement. Only a change of UniProtKB accession numbers and a switch from

TrEMBL to Swiss-Prot will unconditionally imply an update of the local entries cross-

references to UniProtKB. The major part of the internal procedures controlling the

mechanism of local data substitution with external data is listed at
1
:

� http://mordor.isb-sib.ch/make2ddb/pgsql/make2db_update_internal.pgsql

� http://world-2dpage.expasy.org/make2ddb/database_schema/

core_schema.html#core.function.make2db-update-internal-de-integer

Connecting to remote 2-DE databases

Any 2-DE database built with the Make2D-DB II tool can register on the ExPASy

server, and therefore becomes part of a 2-DE net where nodes (remote databases) can

interconnect with each other. In order to contact another 2-DE resource, a 2-DE

database must catch the required information about the other node locations,

information that is centralised by the Make2D-DB II integration components on the

ExPASy server. This process is currently in use for the interconnection of 2-DE

databases. To give nodes more independence in the future, we have included a relation

within the database implementation that can be used to store the required metadata

needed to contact other remote 2-DE databases without systematically going through

the ExPASy server. The dynamicRemoteMake2DDBInterface class (Figure E.V-36)

includes information about the Web addresses to access other nodes, as well as specific

identifiers given for each node. The identifiers (interfaceID) should be defined once by

a central authority (for example, by our group), and they should then serve to clearly

1 A set of procedures labelled “core.make2db_update_internal*()”.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 139

identify a specific database, even if its location, its name or the local dbNumber

change
1
. The information contained in dynamicRemoteMake2DDBInterface is not

supposed to be edited by users, but it must be sent by the ExPASy server to update the

relation content when an update is requested. By convention, the local database will

have an interfaceID equal to zero, so that the tool knows which address corresponds to

the local interface, thus avoiding contacting it.

Figure E.V-36: Information about the remote Make2D-DB II interfaces / databases.

A Make2D-DB II query interface is able to manage simultaneously several local

databases at the same time. Hence, each local database is given by the interface a

distinct sequential number starting from one. The dbNumber attribute serves to define

this local database number when several databases are managed by the same interface.

Remote gels

In addition to information about remote 2-DE databases, the system optionally stores

data on the gels found in these remote databases. Actually, this task is partially

managed by the Web interface, independently of the RDBMS implementation. When

the interface acts as a 2-DE portal, thus accessing itself many other remote interfaces -

a feature that will be discussed hereafter – information about the gels managed by the

remote interfaces are collected and stored locally in the portal directories. For

completeness, and for more autonomy of the RDBMS implementations, with regard to

the Web interfaces, a dedicated class is included in the data model to store the same

kind of data. GelDynamic contains therefore detailed information about the gels that

belong to other remote 2-DE databases. Figure E.V-37 lists the elements used to define

and access these gels. Besides storing the gel related data (names, organism and tissue),

the relation also stores the name of the remote database and the URL to access the gel.

The association between GelDynamic and DynamicRemoteMake2DDBInterface is

logical but is not physically implemented. Since storing information in

DynamicRemoteMake2DDBInterface is optional, we needed to make sure that

GelDynamic would still be operational even in the absence of related data in

DynamicRemoteMake2DDBInterface.

1 When a Web interface is managing several local databases, each of the local databases gets a unique local number.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 140

Figure E.V-37: Information about gels on remote databases.

Estimated location of a protein on remote gels

SWISS-2DPAGE has an add-on feature that evaluates the theoretical location of any

UniProtKB protein over its various maps, provided the whole amino acid sequence is

available in UniProtKB. The estimation is obtained according to the computed pI and

Mw of the protein sequence and is graphically displayed to end-users as a region where

the protein is expected to be
1
, e.g., http://www.expasy.org/cgi-bin/ch2d-compute-

map?ECOLI,P02760.

Make2D-DB II users can access this feature thanks to the GelComputableDynamic

class. This class includes information about available remote gels and the add-on URL

that computes the protein location over these remote gels. In theory, this class can

include any available tool performing the computation of the location of a protein with

a known sequence (e.g., VIRTUAL2D, C.IV.6), as well as the list of gels that the tool

can display. For the moment, only the SWISS-2DPAGE add-on and maps are

incorporated. The gelComputableURL attribute contains, in addition to the address of

the tool that performs the computation, a set of placeholders to be substituted on the fly

with the appropriate parameters needed by the computational tool (a substitution

operation that is performed by the Make2D-DB II query interface).

Figure E.V-38: Data Model – Computed location of a protein on remote maps.

1 http://www.expasy.org/ch2d/expl-gifs.html

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 141

E.V.9 Bibliographic references

Bibliographic references are the literature citations, the sources from which the data

has been abstracted. The Make2D-DB II “Bibliographic references” package is an

autonomous component of the model that manages exhaustively different types of

literature publications. The model is close to the UniProtKB and the SWISS-2DPAGE

representation for references (the ‘R*’ lines)
1
.

The Reference class is at the top of the package. It defines the identity of the

bibliographic reference and gives its title and any related comment. The checksum

attribute is intended for comparison of consolidated references
2
. The class combines

other classes that are aggregated to it (Figure E.V-39).

Figure E.V-39: Data Model – The Bibliographic References package.

We explain the extent of the bibliographic work carried out by the authors of the

reference: the ReferenceWork class describes the information that has been propagated

into the database entry (e.g., protein sequence, review, mapping on gel, etc.). A

1 http://www.expasy.org/sprot/userman.html#Ref_line and http://www.expasy.org/ch2d/manch2d.html#Heading14

2 The consolidation of a reference is part of the materialised views procedures.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 142

reference type is assigned to the reference by the ReferenceType class. The type of a

reference is controlled, and is one of the following pre-selected types:

- Journal - Book - Submitted

- Unpublished results - Unpublished observations - Personal communication

- Thesis - Patent Number

An external method, deduceTypeFromAnnotations(), is associated to the class. Its role

is to parse the reference annotations given by the user and to deduce which type of

reference they match (the user is free to define the keywords he/she uses to indicate a

specific type of work). Any unrecognised or non-listed annotation is categorised as

being ‘Other’ (currently, the new UniProtKB type ‘electronic publications’ fall under

this category). The detailed information necessary for the citation and the localisation

of the reference is stored in the Reference locations subsystem, presented in Figure

E.V-39 by the ReferenceLocationParent superclass (more details are given afterwards).

In Make2D-DB II version 2.50.2 and earlier, we had a direct association between

ReferenceType and the Reference class, which conceptually represents a redundancy at

the relational level. We believed that such a direct association would be useful is some

particular queries. Therefore, we have implemented a mechanism that guarantees that a

reference type associated with a Reference instance is matching the type that

corresponds to the reference location (the verifyReferenceType() method and the

ReferenceTypeIs interface). The redundant association had no negative effect on data

consistency. However, we now believe that this process is not necessary, and we will

be able to remove it from the database implementation in version 2.60.1.

Any reference should have a list of authors. There should be at least one author or a

group of authors (e.g., a consortium) linked to the reference. The Author and the

AuthorGroup classes are subclasses of the more general AuthorParent superclass. Both

of them define a rank position for the author (or the author group) in the authors’ list,

using the authorPriority attribute. For each reference, the uniqueness of a position over

the whole list of authors is controlled by the checkPriorityRank() external method. We

have recently decided to include a ‘People’ subsystem, and to relate the previously

independent authors’ classes to it. This subsystem is presented in Figure E.V-40 where

a superclass is parent of three distinct subclasses: a Contact subclass that we have

already encountered in previous sections of the model, as well as a People and a

Consortium subclass. The Author subclass becomes thus an association class between

Reference and People, while the AuthorGroup subclass becomes an association class

between Reference and Consortium. The Contact subclass is distinct from the People

subclass in the sense that it may also point to non-physical persons, or design people by

their function instead of their name.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 143

Figure E.V-40: Data Model – The People subsystem.

Full details covering the localisation of the references are included within the

Reference locations subsystem (Figure E.V-41). The subclasses express the categories

of the different reference types and their relationship. We have omitted here to

represent a class called Citer and its association with ReferenceLocationJournal. Until

recently, UniProtKB included in bibliographic references “citers”, who are authors

citing unpublished works carried out by others. This subcategory has been abandoned

by UniProtKB and consequently we prefer not to promote it any longer
1
.

1 However, the mechanism for recognising this subcategory is still active within the tool.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 144

Figure E.V-41: The Data Model – The Reference location subsystem.

We have already mentioned association classes linking specific classes to the

bibliographic reference system. This situation is generalised with the

ReferencedObjectParent association superclass linking the Reference class to the

symbolic Object class in a many-to-many association (Figure E.V-42).

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 145

Figure E.V-42: The referenced objects subsystem.

The ReferencedObjectParent association superclass is parent of the

ReferencedProject, ReferencedSample, ReferencedGel and ReferencedEntry subclasses.

Any object that will be added to the model in future developments will have to use a

similar association subclass in order to be linked to the Bibliographic subsystem.

E.V.10 Materialised views and related operations

Many materialised views are present in our data model. They offer an efficient

access to pre-formatted data views. Some of them are final perspectives that are

presented (after some additional Web reformatting) to end–users, while others serve

mainly to construct other views or to optimise common queries. A full collection of

management operations and interfaces help to assemble these views, as well as to keep

them the most up-to-date. These procedures are server-side functions, which means

they are part of the RDBMS implementation. They are nested at several levels, with the

uppermost level offering a high degree of abstraction
1
.

Figure E.V-43 shows how the different components interact in order to materialise

different views that, in turn, contribute in materialising other views. For example,

bibliographic references are assembled in the ViewRef tables (ViewRef and

ViewRefLast)
2
 in order to make text parsing easier An interface accesses ViewRef to

provide other procedures with the materialised bibliographic references specific to each

protein entry (the Entry Reference Blocks interface). Similarly, the spot identifications

of each entry are gathered and stored in ViewSpotEntry (or ViewSpotEntryLast) from

where they become available to other procedures.

1 http://mordor.isb-sib.ch/make2ddb/pgsql/make2db_final_views.pgsql

2 For technical reasons, some materialised views have a similar cloned view (ViewObjectLast) containing a single instance.
These cloned views are used when only one single specific element to assemble is needed on the fly.

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 146

Figure E.V-43: The materialised views components (the protein perspective).

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 147

All these views, in addition to the output of a procedure that assembles all the other

categories of data within the entries, are consolidated to form raw views of protein

entries. ViewEntry (and ViewEntryLast) are consolidated entries in a suitable structure

for quick text parsing. To represent entries to end-users in the familiar SWISS-

2DPAGE-like text format, an ultimate procedure transforms entries from ViewEntry

into the appropriate output, e.g.

� http://www.expasy.org/swiss-2dpage/ac=P05090&format=raw

The Web interface is then in charge of rendering this output user-friendlier, and of

enriching it with additional related data when presented to end-users.

Another mechanism is in charge of constructing materialised views in a gel

perspective. The ViewMapEntryList assembles all identified spots, their physical

properties and identification methods, as well as the corresponding proteins and their

annotations for every available gel. Bibliographic references are also included in the list

by their identifiers (Figure E.V-44).

Figure E.V-44: The materialised views components (the map perspective).

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 148

Materialised views have fields in text format that are easily interpreted by humans.

The fields in ViewRef
1
, ViewSpotEntry

2
, ViewEntry

3
 and ViewMapEntryList

4
 are self-

explanatory, and are often very close to the familiar SWISS-2DPAGE entry structure.

Besides being a human-readable presentation of data, the materialised views are also

helpful in querying the database. They reduce the complexity and the time required to

perform a number of queries. For example, the SRS-like search interface at:

� http://www.expasy.org/swiss-2dpage?full

is a text-based search engine. It lets the user express SRS-like queries that are directly

performed over the materialised entry views, rather than over the more complex inner

schema. This is another reason why all the materialised views must be thoroughly

synchronised with the database content.

E.V.11 Batch operations – An example

As already mentioned, server-side functions are nested at several levels. They

constitute a network of batch operations. Figure E.V-45 illustrates the Global Update

operation, which is at the top of this network. It is performed by the server-side

function make2db_update(integer,integer). This operation commands many other

operations, which in turn command other operations. The interface presented by the

Global Update operation offers the caller abstracted commands to simultaneously:

o Integrate the external data - previously collected - within the local data, and

based on a user-defined level of integration (low, partial or full level).

o Update all the materialised views on the core schema (inner database content)

and adapt the entries’ versions.

o Export the core schema content to the public schema. The data that is made

public is thoroughly filtered from any data marked private. The exported

materialised views are also filtered from any such data.

Calling the Global Update operation with the appropriate parameters is as easy as

executing a simple SQL command. “SELECT make2db_update(3,1)”, for example,

performs all the operations listed above, including a full level of data integration. For

parameters’ details, one may refer to the function documentation at:

� http://world-

2dpage.expasy.org/make2ddb/database_schema/core_schema.html#core.functi

on.make2db-update-integer-integer

1 http://world-2dpage.expasy.org/make2ddb/database_schema/core_schema.html#core.table.viewref

2 http://world-2dpage.expasy.org/make2ddb/database_schema/core_schema.html#core.table.viewspotentrylast

3 http://world-2dpage.expasy.org/make2ddb/database_schema/core_schema.html#core.table.viewentry

4 http://world-2dpage.expasy.org/make2ddb/database_schema/core_schema.html#core.table.viewmapentrylist

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 149

Only database administrators, and not the less privileged select users
1
, have

permission to execute batch operations.

Figure E.V-45: The global update, an example of batch operations.

Many batch operations, such as the operation illustrated above, are accessible to the

database administrators through the tool administration interface where they can be

performed by simple clicks and appropriate parameter choice. The administration

interface will be illustrated in the next chapter.

E.V.12 Additional ontology and controlled vocabularies

Many terms are defined and controlled inside the relational implementation by

means of data types, constraints and relationships. A considerable amount of used terms

is also defined and controlled outside of the relational implementation, using the Data

Analyser component
2
 (cf. F.I).

We have already come across predefined and user-defined topics, identification

methods, bibliographic categories, etc.

In addition to the classical flat file format as one format for data input for the tool,

other flexible formats let the user define some of his/her personal terms under some

1 Users with no rights except performing search queries.

2 Part of the script at http://mordor.isb-sib.ch/make2ddb/lib2d/make2db_ASCII_TABLES.pm

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 150

predefined categories. Examples of terms’ definition on how data is prepared with

predefined and user-defined annotations are given at:

o http://world-2dpage.expasy.org/

make2ddb/2.Readme_preparation.html#spreadsheetsMode

o http://world-2dpage.expasy.org/make2ddb/2.Readme_preparation.html#flatFile

The basic configuration file (baic_include.pl) also offers some control of vocabulary

to be defined by the user.

o http://world-2dpage.expasy.org/

make2ddb/3.Readme_configuration.html#basicConfigurationFile

The mapping method description can be altered or extended to include additional

identification methods (the “mapping_methods_description” parameter). The user can

also define which terms in his/her free text annotations correspond to which predefined

or user-defined identification method (the “mapping_methods_containing” and the

“mapping_methods_not_containing” parameters). He/she also defines what are the

main topics in his/her general annotations to be recognised as 2-DE topics (the

“SERVER::two_d_MAIN_TOPICS” parameter).

Some other definitions require an adaptation of the relational implementation, and

are therefore not directly editable by users. We may for example alter the bibliographic

categories defined in the Analyser component
1
 to exclude or to add new categories (any

new category will require the implementation of a new dedicated class and an

appropriate management). But we may also simply redefine the used vocabulary that

represents each of these categories.

Finally, it is important to be aware that finding a balance between flexibility and

consistency in a database implementation depends on the balance between the

flexibility and the rigidity of terms that are used to define objects and concepts.

E.V.13 Metadata and technical records

Technical records are classes that contain metadata relative to the database

implementation. They store metadata about the database and the Make2DDB II version

in use, as well as precise information about any operation modifying the database

content, including history of all data modifications.

The Release class

We have already come across the Release class, the class to which the Entry class

refers when defining an entry creation release number. Let us remind the reader that the

Release class is an independent class containing the release numbers of the successive

publications of the database along with their corresponding dates, and that a database

release is formally made of a release number and a sub-release number (Figure E.V-25,

1 The “%main::rl_categories” variable defined within the script.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 151

the Release class). For a newly created Make2D-DB II database, either the database is

initialised with version 1.0, or the user explicitly defines a list of previous database

publication dates if the database has been previously published in another format.

Alternatively, for previously published databases, a list of prior database releases can

be extracted from a flat file by parsing the date information of the different protein

entries
1
. The information in this case may sometimes be incomplete, but this does not

have any side effect on data consistency.

A database release is principally meant for public end-users as a milestone to signal

significant changes in database content. Therefore, after a global database update and

an export of the inner data to the public schema, the administrator is asked to choose to

perform an increment, either on the database release, or on the database sub-release,

depending on the importance of the changes
2
. Any new major release will necessarily

imply an initialisation of the sub-release counter to one. The increment operations are

generally managed from outside the RDBMS implementation through the

administration interface.

For statistical purposes, it is suitable to display entry modifications grouped by

database releases
3
.

The Database class

The database class is the sole class that is not defined in the core schema (and

therefore, not cloned in the public schema). Being in the common schema, it is directly

accessed by both administrators and non-privileged users with no write permissions.

The class has one unique instance, which contains metadata about the database (Figure

E.V-46). The content of the class is used to display general facts about the database

content within the associated Web interface. The class is also meant, theoretically, to

unambiguously identify the database to other remote interfaces.

Much of the data within this class initially originates from the configuration

parameters the user defines when he/she is installing a new database. The content is

then regularly updated when the related data are modified. The administrator can also

manually modify part of the class content at any moment using the administration

interface.

The databaseIdentifier attribute is an identifier that is intended to be unique across

all Make2D-DB II distributed databases. We already came across its signification when

we described the DynamicRemoteMake2DDBInterface. For the moment, this attribute

is initialised without checking if the same identifier is already used by another database.

In the future, additional developments of the system should include a mechanism to

automatically assign a unique database identifier to each 2-DE database. The advantage

is to be able to clearly distinguish and to identify remote databases within the 2-DE

1 For SWISS-2DPAGE, information on the prior database releases has been extracted this way.

2 The administrator still has the choice of not incrementing the database release number.

3 http://world-2dpage.expasy.org/make2ddb/database_schema/common_schema.html#common.function.make2db-
release-of-date-date-boolean-boolean

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 152

network, even if some databases change their location or their name. Another

advantage is to make the 2-DE network far less dependent on a central location where

metadata about remote 2-DE databases have to be constantly consulted in order to

maintain links between the nodes (the DynamicRemoteMake2DDBInterface local class

will thus be in charge of the linkage). The idea is that, once the system is installed, it

will send an electronic signal to the centralised integration components of Make2D-DB

II located on the ExPASy server to declare itself, and to ask to be assigned a unique

identifier. This identifier will therefore be sent back and will be permanently attached

to the database class
1
. If the database changes its location, an export of the database

content into a new location will still keep this identifier. If the database is reinstalled on

the same location using the right “update option” parameters offered by the tool, the

database identifier will also be safely kept, independently of any change on the

database name. Technically, this mechanism is relatively easy to set up. Its

implementation will depend on the usefulness that depends on the number of publicly

accessible 2-DE databases, as well as on some political considerations
2
. The

databaseIdentifier may be subject to data type change.

Figure E.V-46: The Database common class.

1 Technically, it is even possible to “LOCK” the value within the table, so it will not be altered afterwards.

2 Like agreeing on one representative authority to definie proteomics database identifiers.

EE..VV.. TThhee mmaaiinn ccoonnssttiittuueennttss ooff tthhee ddaattaa mmooddeell

 153

In addition to the databaseIdentifier, the Database class contains a databaseName

attribute, which is the name given by the database administrator to his database, a short

free text description of the database, as well as the database release number and date,

extracted from the Release class, and with optional comments regarding the current

release. Additional information covers the database associated Web interface URL, and

its assigned identifier.

The administrator interface generates statistical facts about the database content

exported in the form of a HTML document. This document is stored in the

databaseMainSummary attribute. We have recently decided to include a simple

approach of querying a database about its statistics in order to automatically import

them in any 2-DE portal built with our tool
1
. As we will see later, a Make2D-DB II

portal is a Web interface that interacts with any number of remote 2-DE interfaces. The

portal sends queries to the remote interfaces, all at once, and displays the results

consolidated to the end-user. Displaying metadata and statistical facts about remote

databases within a portal homepage is a very convenient way to describe the origin of

the data being collected by the portal.

The Make2DDBTool class

This class contains technical information about the Make2D-DB II version used in

building the system: the version, the subversion and the version date of the tool, as well

as the PostgreSQL version managing the system. The action attribute is one of three

possible actions performed by the tool: <create> (create a new database from scratch),

<transform> (convert data from another format) or <update> (update data or tool on an

already installed database). The class plays an important role in interconnecting remote

2-DE databases, as it informs any calling interface about the version of the local

database. The structure of the database is version dependent. Even if remote interfaces

never access directly the inner structure of a database - remote queries are addressed in

an abstract manner – knowledge of the database version informs if a specific query can

or can not be performed, as older versions may not support some newer queries.

Figure E.V-47: Make2D-DB II tool information class.

1 Until Make2D-DB II version 2.50.2, statistics and database metadata were only displayed interactively. Starting from

version 2.60.1, we will be able to export them into a remote interface using the generic URL syntax:
http://someServer.org/databaseName?stats&extract

CChhaapptteerr EE.. TThhee MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt -- TThhee CCoonncceeppttss

 154

When connecting to a distant database, an interface interrogates at first the database

version, so it knows which queries it can correctly handle, e.g.,

o http://www.expasy.org/swiss-2dpage?make2d&extract

Operation dates and history of data modifications

We have previously mentioned that each relation in the core schema, except the

materialised views, has two extra attributes: the userStamp and the update fields, giving

the name and the date when a tuple has been inserted or modified within the relation.

We have also mentioned that an automatic mechanism records into the log schema

every modification that occurs in the core schema. All the core relations are

automatically cloned in the log schema with three additional attributes that record the

modification date, the modifier name and whether the tuple has been modified or

deleted. Having a place to store every modification within the database is an additional

security feature to the classic regular database backups. However, it will require a

person familiar with relational systems and with the data model of the tool to be able to

manipulate and restore the data

E.VI. Implementing a working system out of the concepts

We have presented in this chapter the main motivations and the ideas that have led

us to conceptualise and implement the Make2D-DB II tool. The ideas have been

translated in terms of a physical and evolving data model interacting with its

environment.

The next chapter is dedicated to the description of the pieces of the puzzle, that

when joined together, constitute the whole image we have in mind of a global

integrative 2-DE network. We will be able to describe in details the major components

of the tool, how they are implemented and how they interact with each other. We will

describe how the tool can be configured and installed, how data is converted into a

local database, how distributed data is integrated into the system and how it is managed

by users. We will illustrate afterwards the many functionalities of the Web interface,

which acts both interactively, as a search engine to query local and remote 2-DE

databases, as well as a Web node capable of interconnecting with any similar node to

import and export data between remote installations, thus forming a global virtual 2-DE

database.

155

C h a p t e r ����

CHAPTER F. MAKE2D-DB II ENVIRONMENT:
COMPONENTS AND IMPLEMENTATION

This chapter describes how Make2D-DB II is physically implemented, how

the distributed systems interconnect, and how data is integrated.

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 156

F.I. The complete image

Make2D-DB II can be schematically divided into two major parts (Figure F.I-1):

� The Make2D-DB II distributed package: This package implements the

“Installation and Data Conversion” components, the “Local 2-DE Databases”

components and the “Local 2-DE Web interfaces” components. The package

ensures the interconnection between remote 2-DE implementations, and helps

to set up personalised 2-DE Web portals anywhere on the Web.

� The central data integration mediator: Integration of remote non 2-DE data is

administered by a mediator residing on the ExPASy server. This is also where

remote 2-DE databases can be “registered” to become automatically visible to

each other.

Figure F.I-1: The Make2D-DB II environment.

A closer examination of the major elements gives us a larger insight into the inner

components of the global environment and their interactions (Figure F.I-2).

FF..II.. TThhee ccoommpplleettee iimmaaggee

 157

Figure F.I-2: Details of the Make2D-DB II environment.

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 158

F.II. The Make2D-DB II distributed package

The components contained in the Make2D-DB II distributed package are sufficient

for a complete local 2-DE database installation. All the elements needed for the

conversion of data, the database implementation and its publication on the Web are

supplied, along with the elements responsible for the interconnection with other similar

remote 2-DE databases and the ExPASy-resident components.

Details on the package are provided on the package Web server at:

� http://world-2dpage.expasy.org/make2ddb/

F.II.1 Installation process

In this section, we will explain how a user prepares his/her system, how he/she

writes data and how he/she launches the appropriate commands to convert this data into

a Make2D-DB II local database. The installation process is fully described at:

� http://world-2dpage.expasy.org/make2ddb/1.Readme_main.html#installation

and

� http://mordor.isb-sib.ch/make2ddb/readme/Technical-Implementation.doc

Prerequisites

Make2D-DB II runs on any Unix or Unix-type operating system (Linux,

Solaris/SunOS, BSD, Irix). The environment relies on some few free components that

must be installed on one’s system
1
. The prerequisite components are: a Perl

2
 interpreter,

a PostgreSQL server
3
 and an Apache HTTP server

4
. All these components are present

by default in many operating systems, such as standard Linux distributions. Some few

free Perl modules are also required. Other additional components (C libraries and Java

interpreter) are optional and serve to extend some features of the tool. The user must

prepare the PostgreSQL server as described in the tool’s manual.

Overview of the tool’s options

The tool runs with several different options:

[syntax: perl make2db.pl –m option]

� <config>: To set up the configuration files for both the database installation

and the Web interfaces.

1 http://world-2dpage.expasy.org/make2ddb/1.Readme_main.html#before

2 http://www.perl.org/

3 http://www.postgresql.org/

4 http://www.apache.org/

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 159

� <check>: To check the syntax and the consistency of the provided data.
Corrections are proposed when an error is encountered. The process is

interrupted when a major error is met.

� <check-report>: Same as the <check> option, except that the process

continues even if a major error is encountered. This option is helpful to report

all detected errors in a final report without any interruption of the program.

� <create>: To implement the relational schema for a new database. A void

database is created if no data is provided.

� <update>: For updates of the database schema structure, the interfaces and the

database content when adding extra data or updating to a Make2D-DB II

newer version.

� <server>: To prepare and install the files for the Web server. This option can

also be used independently, without any 2D-PAGE data, in order to host a

local Web-portal to query remote databases.

� <transform>: A shortcut to combine the <check>, the <create> and the

<server> options.

Information regarding the tool is obtained using the syntax:

[perl make2db.pl –info], where info is:

� <help>: To display the list of possible options and the package’s metadata.

� <version>: To display the current version of the tool.

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 160

Figure F.II-1: Installing the Make2D-DB II distributed package.

Schematically, for a standard installation, the user provides his/her data in a

recognised format. He/she configures the many parameters that define how the tool

should behave, how the data should be interpreted, which external data should be

integrated, and how the integration should be performed. In Figure F.II-1, the person

that is in charge of the installation process is referred to by bioinformatician. This

person is responsible for preparing the data provided by the biologists in a format that is

understood by the system. He/she is also responsible for configuring the system

parameters to properly suit the desired installation. Subsequent tasks are the conversion

of data into the relational database, the installation of the Web interfaces and, in some

cases, the update of the whole system. These tasks are essentially managed by the tool

itself, according to the configuration parameters given by the bioinformatician. An end-

user interacts with the system only by way of the Web server to address his/her queries.

F.II.2 Data preparation: formats and annotations

Preparing the data

Except for void databases, the user must prepare his/her data conform to the

instructions given in the data preparation document at:

� http://world-2dpage.expasy.org/make2ddb/2.Readme_preparation.html

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 161

This document describes in details all the different input formats, including the

annotation structure and syntax to use. A brief summary of how data is prepared as

described in the readme document is given hereafter.

Maps and their annotations

Images of maps and their corresponding thumbnails must be provided. Each map is

annotated following a precise format. Some of the annotations are mandatory, while

some are optional. Annotations cover the following topics:

o Map identifiers and descriptive names

o Image dimension (including potential axis and origin’s shifting)

o pI and Mw ranges

o Species and tissue definition

o List of identification methods applied to the whole map

o URL addresses and/or local file paths describing the preparation protocol and

the informatics part

o The software used for the detection of the spots and the number of detected

spots

o Comments

Map annotations are in text format
1
. They can be generated interactively by running

the tool configuration utility (using the <config> option).

1 Example: http://world-2dpage.expasy.org/make2ddb/examples/existing.maps.detailed.example

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 162

An example of generated map annotations:
PLASMA
longname:Plasma Test Gel
x:424
y:431
x-shift:0
y-shift:0
pi-start:4.0
pi-end:8.0
mw-start:15000
mw-end:40000
taxid:9986
strain:Oryctolagus cuniculus crossed
tissue:Cervical
preparation-uri:http://www.expasy.org/ch2d/protocols/protocols.fm2.html
informatics-uri:http://www.expasy.org/ch2d/protocols/protocols.fm4b.html
preparation-doc:/Make2D-DB_II/data_test/gel_doc/SDSprotocol.html
informatics-doc:/Make2D-DB_II/data_test/gel_doc/GelInformatics.gif
comment:The preparation procedure is fictive (for demonstration)
informatics-comment:The spots phyiscal properitites are fictive
software:ImageMaster 2D Platinum and Melanie 6.0
mapping:Gm,PMF

The spot and the protein annotations

There are actually three manners to provide spot and protein annotations. The user

can choose between:

o Flat file1 (listing sequentially the protein entries)

o Spreadsheet2 (CSV / tab-delimited text files, e.g., Excel exports)

o Melanie / ImageMaster
TM
 2D Platinum XML exports3

Both the flat file and the spreadsheet modes offer a high degree of annotation that

we fully describe in the data preparation document. The flat file format, a protein-

centric perspective, is a SWISS-2DPAGE-like format with extended annotations

specific to Make2D-DB II. The spreadsheet mode, a spot-centric perspective, has a

wide list of predefined annotation categories, in addition to any number of user-defined

categories. Melanie XML exports (Figure B.III-4) are essentially lists of spot

identifiers, with appropriate coordinates, intensities, and identified proteins. The

Melanie exports may lack high-level annotations, but users can combine Melanie

exports with flat files to extend annotation. A flat file non-combined with a Melanie

XML export requires associated reports that define the spots’ positions, their physical

properties and their relative intensities. In both the spreadsheet and the Melanie XML

modes, the tools generates an intermediate flat file that users can manually edit in order

to refine their original annotations or to add extra annotations that are specific to the flat

file mode
4
.

1 Example: http://mordor.isb-sib.ch/make2ddb/data_test/examples/test.dat

2 Examples: http://world-2dpage.expasy.org/make2ddb/examples/PLASMA.excel_example.txt and http://world-
2dpage.expasy.org/make2ddb/examples/PLASMA2.excel_example.txt

3 cf. Figure B.III-4

4 By editing the generated last_generated_flat_file.dat file in the data directory, and then switching to the flat file mode.

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 163

By providing various identifiers that are recognised by the tool - such as UniProt-

like accession numbers, cross-links to UniProtKB entries, biosource definition and

NCBI taxonomy values - users ensure their annotations are enriched with additional

information, which the tool automatically collects and integrates into the database. The

same type of identifiers makes the database content also accessible and queriable by

other remote 2D-PAGE databases.

The flat file mode

The flat file is structured to be readable by humans, as well as by computer programs. It

is a protein-centric perspective. The different lines describing one entry begins with a

two-character line code, which indicates the type of data contained in this line. The

remaining part of the line follows some specific rules that depend on the type of data.

Specifications to build a flat file are fully described at:

� http://world-2dpage.expasy.org/make2ddb/2.Readme_preparation.html

#flatFileMode

These specifications extends the ones described in the SWISS-2DPAGE user manual:

� http://www.expasy.org/ch2d/manch2d.html

The flat files may vary greatly regarding the quality and the quantity of the

annotations they contain. Many data types are not explicitly required. Default values for

missing mandatory data types can be set up within separate configuration files (e.g.,

bibliographic references, studied species, etc.). Some annotations, in particular those

covering the identification methods, belong to a controlled vocabulary and are based on

user-defined definitions.

In addition, users are asked to provide spot reports that give, for each spot, an

identifier and a location on a gel. The physical properties of the spots are given either

within these reports or within the flat file. The spots’ relative optical densities and

volumes are optional. Most 2D-PAGE image analysis software are able to export this

kind of reports. Table F.II-1 is an example of a flat file
1
.

1 A more extended example of a flat file is given at the address:

 http://world-2dpage.expasy.org/make2ddb/examples/test.dat

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 164

Table F.II-1: An example on an annotated Make2D-DB II flat file.

TEST_2DPAGE Release 3
Feb 2005

AC P12345;
2D -!- MASTER: PLASMA;
2D -!- PI/MW: SPOT 397=4.43/32375;
//
AC ZI|GI.MINIMAL;
2D -!- MASTER: PLASMA;
2D -!- PI/MW: SPOT 397=4.43/32375;
DR Swiss-Prot; P00853; -
DR NCBI_Protein; 31543902; -
//
AC Z02760;
OX NCBI_TaxID=9606;
IM PLASMA; PLASMA-MAP1; PLASMA-MAP2; LIVER; LIVER-MAP1; LIVER-MAP2.
RN [1]
RP MAPPING ON GEL.
RX MEDLINE; 78094420.
RA Anderson N.L., Anderson N.G.;
RT "High Resolution 2-DE of human Liver";
RL Proc. Natl. Acad. Sci. U.S.A. 74:5421-5425(1977).
2D -!- MASTER: PLASMA;
2D -!- PI/MW: SPOT 111=4.89/32122;
2D -!- PI/MW: SPOT 112=4.97/33422;
2D -!- MASS SPECTROMETRY: SPOT 112: [2] 669.468 (1.09); 324.448 (2.67);
2D 435.708 (3.17); 512.129 (1.2); 517.129 (1.9), 598.345 (2.17) :
2D 469.468 (1.59), 524.448 (2.17), 571.432 (1.08);
2D file:/some_path/msms.pkl ident-file:/some_path/msIdentResults.dat
2D uri:http://www.ebi.ac.uk/pride/experimentAccessionNumber=someID
2D ident-uri:http://www.ebi.ac.uk/pride/experimentAccessionNumber=ID
2D -!- PEPTIDE SEQUENCES: SPOT 112: (R)SLDMoxDSIIAEVK(A),252-263;
2D (R)ASLEAAIADAEQR(G),328-340; (R)LEGLTDEINFLR(Q),213-224 {private}.
2D -!- PATHOLOGICAL LEVEL: Increased during renal insufficiency [1];
2D SPOT 112: Decreased during renal insufficiency.
2D -!- MASTER: LIVER;
2D -!- PI/MW: SPOT 100=5.05/42200;
DR UniProtKB/Swiss-Prot; P02760; -
//
ID My Favourite Protein; PRELIMINARY 2DG.
AC P02990;
2D -!- MASTER: PLASMA;
2D -!- PI/MW: SPOT 397=4.43/32375;
//
…

The spreadsheet mode

By using the spreadsheet mode, users have the choice to work with a large range of

pre-defined annotations, as well as with any number of user-defined free text

annotations. The spreadsheet mode means any text report with fields separated by

tabulators (tab-delimited files / CSV), such as spreadsheet software exports (e.g., Excel

exports). It is a spot-centric perspective, as opposed to the protein-centric perspective of

the flat file mode. Details on the spreadsheet mode are given at:

� http://world-2dpage.expasy.org/make2ddb/2.Readme_preparation.html

#spreadsheetsMode

A separate report should be given for each map. There are three distinguishable

categories of data. A category is recognised thanks to the header that is given on top of

each column. The three categories are:

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 165

� The mandatory types (required)

� The pre-defined types (optional and syntactically controlled data)

� The free text types (types that are defined by the user)

Various simple rules apply in order to append, for example, several distinct

annotations of a similar type to the same spot, or to affect the same annotation to all

spots belonging to the same entry or to all spots belonging to the whole map.

The spreadsheet mode is much more flexible than the flat file mode. For example,

users may list their bibliographic references in a separate file
1
, and refer to these

references by the identifiers they are given (e.g., Table F.II-2). The following three

Web links provide an outline of the different possibilities to annotate a map in this

mode:

o http://world-2dpage.expasy.org/make2ddb/examples/PLASMA.excel_example.txt

o http://world-2dpage.expasy.org/make2ddb/examples/PLASMA2.excel_example.txt

o http://world-2dpage.expasy.org/make2ddb/examples/PLASMA3.excel_example.txt

1 Example: http://world-2dpage.expasy.org/make2ddb/examples/reference.txt

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 166

Table F.II-2: An example of annotations in Make2D-DB II spreadsheet mode.

SPOT 89 111 112

X 400 450 390

Y 420 390 690

pI 4.12 5.76 4.78

Mw 25,400 27,100 33,100

Od 0.992 0.656 0.356

Volume 1.231 0.567 0.498

AC P02760 Q99TY2 P13693

Mapping
Methods

PMF, Im, AA, Co MS/MS, Gm MS/MS, Gm

PMF

769.46 (1.09);
824.48 (2.67)…
TRYPSIN
(private)

MS
[1001.5:2] 669.46 (4.09); 324.48
(2.67)…: 512.19 (1.2);…

MS FILE Some/path/msms.mgf
mzdata:
mzdata1.05.xml

MS IDENT-
FILE

Some/path/msIdentResults.dat

MascotReport.dat

MS URI
www.ebi.ac.uk/pride/directLink.do?
experimentAccessionNumber=11

Peptides
(R)SLDMoxAEVK(A), 254-263
(S)RLDMoxDVA(E), 225-233

Amino Acid
B=9,Z=6.7,S=3.7,
…

Expression
Increased During
the Acute-Phase

*High expression in strain

*Positional
Variants

 Some rare variants

Comment:
Subunit

Homodimer
(Similarity)

REFERENCE 1 1,2 1

The Melanie / ImageMasterTM 2D Platinum XML exports

The tool will parse all found XML files generated by the Melanie software in order

to extract spot locations, shapes, physical properties, and corresponding identified

proteins. This is described at the following address:

� http://world-2dpage.expasy.org/make2ddb/2.Readme_preparation.html

#MelanieMode

To enhance the annotation possibilities, relatively limited XML exports can be

combined with a highly annotated flat file.

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 167

 An example of an annotated Melanie XML export:

<Gels>
<Fileinfo>

<Type>Export</Type>
<Version>1.0</Version>
<User>mostaguir</User>
<Date>17/02/2005 18:54:06</Date>
<Application_Name>ImageMaster & Melanie Viewer</Application_Name>
<Application_Version>5.0.2.0</Application_Version>
<Organisation/>

</Fileinfo>
<Gels_Data>

<Version>1</Version>
<Gel Id="2a9aecf7-b491-4bd1-9d07-78529675b0f2" Cols="424" Ref.="2" Rows="431" Class=""

Spots="516" Caption="a" GelName="Y:\Make2d\Make2D-DB_II\data_test\PLASMA"
MaxGray="2189.00" MinGray="90.0000" PixWidth="175" PixHeight="175" Gray_Slope="1.00000"
Annotations="10" Gray_Offset="0" IsSynthetic="0" Selected_Spots="0" Selected_Annotations="0">
<Gel_Properties/>
<Spots>

<Spot X="38" Y="5" Id="1" Mw="247654" Pi="3.54634" Vol="223.042" Area="0.704375"
Flag="0" X_Align="0" Y_Align="0" Saliency="0" Intensity="611.000"
percentVol="0.318571" percentIntensity="0.548996"/>

<Spot X="46" Y="103" Id="111" Mw="98320" Pi="3.68293" Vol="90.8031" Area="0.765625"
Flag="0" X_Align="0" Y_Align="0" Saliency="0" Intensity="261.000"
percentVol="0.129694" percentIntensity="0.234514">

 <Annotations>
 <Annotation Id="4">
 <Label Value="P02760" Category="Ac"/>
 <Label Value="HC_HUMAN" Category="ProteinName"/>
 </Annotation>
 </Annotations>
</Spot>

....
</Spots>
<Annotations>

<Annotation X="6" Y="4" Id="1">
 <Label Value="l1" Category="Landmark"/>
 <Label Value="3.00 250000" Category="pI_MW"/>
</Annotation>

</Annotations>
</Gel>

</Gels_Data>
</Gels>

Comments on annotations

In all the three previous modes, users have the possibility to include additional local

documents and Web addresses (pointers) for external documents to enrich their

database annotations. Documents and pointers will be available from within the tool’s

Web interface. Users also control which data is public and which data is restricted to

privileged users For MS analysis, the tool directly extracts the peak list values from a

range of various output document formats
1
.

F.II.3 The configuration files

The user has a large control over the behaviour of the tool regarding the databases

and the Web servers’ installations. The configuration process is launched by running

1 Various examples at http://mordor.isb-sib.ch/make2ddb/data_test/ms_files/

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 168

the tool’s configuration utility
1
 (using the <config> option). This interactive process

guides the user to generate two distinct configuration files: the main configuration file

include.cfg, and the server configuration file 2d_include.pl. Both files are required to

install a new database and to set up a corresponding Web server. A third configuration

file, named basic_include.pl, is distributed with the package and do not need to be

generated. This file contains some global definitions and controls the behaviour of the

tool. It is generally not necessary to edit this file, except for non-standard installations.

The full description of the configuration process and all related parameters is given at:

� http://world-2dpage.expasy.org/make2ddb/3.Readme_configuration.html

The configuration process is also helpful to annotate the different maps, to modify or to

update an already installed database, to reconfigure an already running Web server, as

well as to create a new Web portal (an entry point to access several remote interfaces

and databases at once).

The main configuration file: include.cfg

This file defines how to perform the database creation process.

� http://world-2dpage.expasy.org/make2ddb/3.Readme_configuration.html

#mainConfigurationFile

The user gives all technical parameters regarding the PostgreSQL database

installation. He/she also defines the kind of data to be converted, the files’ location, and

the mode to use. A whole range of particular data types can be attributed default values

to use with the source data. This file also defines where to install the Web server

interfaces.

An example of a generated main configuration file, listing the different parameters

that can be configured, is given at:

o http://world-2dpage.expasy.org/make2ddb/examples/example.include.cfg

The server configuration file: 2d_include.pl

Each Web server needs a specific server configuration file that controls its

behaviour.

� http://world-2dpage.expasy.org/make2ddb/3.Readme_configuration.html

#serverConfigurationFile

This file defines what the Web interface should look like, and how it should act.

Titles, shape, colours, icons, and contact information can be defined, as well as map

images’ shifting, private data passwords, copyright messages and external data

visibility. The user also defines technical parameters related to the Apache installation,

1 http://mordor.isb-sib.ch/make2ddb/lib2d/make2db_CFG.pm

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 169

and he/she states if desired to activate the URL redirection rules
1
. More importantly, as

several local or remote databases can be simultaneously accessed by the same Web

interface, the user defines a list of databases to connect to, along with their connection

parameters.

An example of a generated server configuration file, listing the different parameters

that can be configured, is given at:

o http://world-2dpage.expasy.org/make2ddb/examples/example.2d_include.pl

After the installation of the Web interface, the user is free to modify this

configuration file. For example, if he/she wishes to adjust or alter the look and feel of

the Web interface. At any moment, he/she may also add any newly created database (or

remove an already accessible database) to the already running Web server. This is

useful since a Make2D-DB II interface has the ability to simultaneously access several

databases.

The basic configuration file: basic_include.pl

In addition to the previous two user-generated configuration files, a third

configuration file defines additional parameters that control the overall behaviour of the

tool.

� http://world-2dpage.expasy.org/make2ddb/3.Readme_configuration.html

#basicConfigurationFile

The file is subdivided in three editable sections: the ‘General Behaviour’, the

‘Global Definitions’, and the ‘Query remote interfaces’ sections. In most cases, the user

does not need to modify the proposed values.

The ‘General Behaviour’ section

This is where specific remote resources can be included or excluded from the data

integration process. The user also defines the level of integration and data replacement.

Specific features, essentially technical issues controlling the Web interface behaviour,

can be turned on or off from within this section.

The ‘Global Definitions’ section

In this section, the identity of various components of the package is defined. This

includes URL addresses for some external components, and a list of different patterns

and keywords that are used when reading and generating data in text formats. More

important, the user may redefine the different ontologies and controlled vocabularies

that cover the identification methods, the main annotation topics and the bibliographic

categories, in order to make them correspond to his/her personal definitions. Finally,

1 To rewrite URL addresses at the Web server level based on a few transformation rules that let the server understand

meaningful addresses, e.g.,: http://some-domain/my_2dpage/map=plasma

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 170

many technical database optimisation parameters can be controlled from this particular

section.

The ‘Query remote interfaces’ section

Any Make2D-DB II Web server has the ability to access and query, in addition to local

databases, any public remote Make2D-DB II Web server (or interface) available on the

Web. The interconnection is performed by means of simple HTTP protocols. This

section offers the user the possibility to define his/her personalised list of remote

servers and databases. The basic configuration file ends with a fourth section that only

developers and experimented users may edit.

A copy of a standard basic configuration file is given at:

o http://world-2dpage.expasy.org/make2ddb/examples/example.basic_include.pl

After the initial installation process, all the configuration files are copied into the

Web server directories. By modifying the files within the server directories, a user may

change - at any moment - many of the initial definitions.

F.II.4 The Data Analyser and Converter1

Analysing and converting the data provided by users is a complex process. The first

step is the analysis of the data at the syntax and lexical levels. During the process of

analysing the data significance and consistency, The Make2D-DB II tool employs an

inner data conversion. This conversion transforms the user-provided data, coming

either from flat files or from spreadsheets, into a format that is a combination of a plain

text format - similar to a flat file like format that we keep for historical reasons - and a

Perl data structure. This kind of structure is convenient to carry out the analysis

process, due to the complexity of the data we are dealing with, and due to the type of

verifications that we have to perform over this data.

The Data Analyser component and the Data Converter component are Perl modules

working concurrently (Figure F.II-2).

Reading the configuration files and controlling the presence of the required data

The tool starts by reading the configuration parameters defined by the user. It then

makes sure all the needed files are present and follow the expected formats.

Updating the external documents

The distributed package contains a set of supporting documents, among which a list

of tissue names and their aliases, as well as a list of cross-reference databases and their

contact parameters. The tool verifies that these documents are recent enough. If they

are not, a signal is sent to the integration mediator on the ExPASy server, and up-to-

date versions of these documents are imported locally.

1 http://mordor.isb-sib.ch/make2ddb/lib2d/make2db_ASCII_TABLES.pm

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 171

Figure F.II-2: Data analyser and converter - the <check> option.

Generating structured entries

Before analysing the data content, and in order to process the entries sequentially,

the tool rearranges and merges the original data. It then converts it into a rich plain text

format combined with a nested Perl data structure. Processing the entries sequentially is

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 172

a historical choice that originates from the SWISS-2DPAGE-like protein perspective.

This process also includes the integration of the content of some optional user-provided

documents, e.g., the mass spectrometry files, whose content is parsed and integrated

within the structured entries
1
. In the spreadsheet mode, the generated entries are

physically stored in the work directory so that the user may intervene on them and

apply any additional modification.

At this point, the data is progressively checked, entry after entry, for its syntax and

its consistency with previously analysed entries. Some flexibility is considered

regarding the syntax and the completeness of the information.

Checking the syntax

The data is syntactically controlled thanks to an extended syntax checker. Except for

the content of free text annotations, each type of information must be understood by the

tool. If the tool fails to recognise the nature of any data or if it finds that a type of data

is not given in its expected format, it displays an error message, along with a help

proposal (whenever possible).

Checking the consistency

All the relationships that are part of the data model described in the previous chapter

must be established and all the constraints must be verified. This is the heaviest task of

the data analysis process, as any error or inconsistency should be detected before

attempting to physically implement the relational database. The process fully analyses

the significance of each type of information and its consistency and then generates the

relationships this information has with the rest of the provided data. A large set of

notifications, warnings and error verbose messages is associated with the process to

help the user and notify him about any action taken by the data checker, as well as to

help him to detect the source of any data inconsistency.

Incomplete data

Some provided data may be incomplete or may lack expected relationships with

other types of data. If the missing information does not affect the consistency of the

database and does not cause a critical ambiguity, then the tool accepts it, explicitly

marks it as being incomplete or ambiguous, and reports it to the user so that he/she is

aware of the incident. Ambiguities will always be visible to end-users who query the

database, so that they are also aware of the incompleteness of the information.

In some situations, the user is required to interactively intervene during the analysis

process to make a choice between several proposals. The most critical situation is when

a referenced unique identifier has been demerged (split) in the referenced resource. This

1 In order to parse mass spectrometry files, we have adapted an up-to-date version of the file parser of Phenyx, the

InSilicoSpectro module (http://insilicospectro.vital-it.ch/), to work with the Make2D-DB II tool. Phenyx is the
software platform for the identification of proteins and peptides from mass spectrometry data (http://www.phenyx-
ms.com/).

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 173

is common with many UniProtKB accession numbers that have recently been

demerged into several new entries
1
.

Integration and merging of external data

Throughout the data conversion process, external data of interest is continuously

integrated and merged with the user-provided data. While processing the local data, the

tool collects external related information from the central data integration mediator,

residing on the ExPASy server, as well as from many remote federated 2-DE systems

built with the Make2D-DB II tool (Figure F.II-3). The integration is processed at

different levels: the database, the map and the protein levels.

Figure F.II-3: Data analyser and converter – Integrating data from external
resources.

Generate converted data in Make2D-DB II ASCII tables and in plain text files

The final step of the conversion process is the preparation of the data to be imported

into the relational system. Technically, the tool generates ASCII (text) files reflecting

the relational model. The ASCII files are intended to directly populate the relational

implementation.

1 If a UniProtKB entry has been demerged, the tool first tries to associate the local entry with the new UniProtKB entry

that refers to the same organism of the local entry. If none satisfies this condition, then a user intervention is reclaimed
to choose between the new entries, or to simply skip any association with UniProtKB.

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 174

Verbose reports

The user is notified about every single action taken by the analyser and the converter

to inspect, rearrange, ignore or modify the data. Notification messages and error

messages are interactively displayed and also reported in a final detailed log file, like

for example the report at:

o http://mordor.isb-sib.ch/make2ddb/temp/last_STDOUT.log.

Many situations cause the tool to engender a notification, a warning, or an error

message. Given the complexity of the analysis and the conversion tasks, it was

important to report all the actions taken with as much precision as possible. We have

therefore provided the tool with an extended set of verbose messages to ensure that all

particular actions, all ambiguities, and all minor or major inconsistencies are accurately

detected and clearly explained to the user. Table F.II-3 lists a brief sample of the kind

of messages the user is expected to receive whenever an unusual situation occurs.

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 175

Table F.II-3: A sample of user-addressed messages during the conversion process.

Type Message Explanation

warning

WARNING: one of your UniProtKB
accession numbers (P31059 /
TaxID=83333) has been demerged!
[1] P0A7C0; P31059; P97542;
[TaxID:83334] {Escherichia coli
O157:H7.}
[2] P0A7B8; P31059; P97542; Q2M8M8;
[TaxID:83333] {Escherichia coli
(strain K12).}

assigning the following UniProtKB
entry for P31059 => P0A7B8

The tool detects that a
referred UniProtKB
accession number has been
demerged, and
automatically assigns the
one that shares the same
taxonomy identifier. User
intervention is required
if none of the organisms
of the demerged entries
corresponds to the one of
the local entry.

warning

A pair of spots in entry $ac / map:
$master share exactly the same pI/MW
values. Please, verify the consistency
of their values! Choose to continue or
to stop the process. If you choose to
continue, the Mw of one of the 2 spots
will be shifted by +1 Dalton for
internal rearrangement, but will
remain as given for external display.

Two different spots
should never share the
same physical properties.

warning

.. ambiguous reference(s) in a free
text topic found for map '$master' in
entry $ac. The topic(s) will be marked
as being ambiguous.

Annotations in an entry
that contains several
bibliographic references
are expected to indicate
to which reference they
belong. Otherwise, they
are marked ambiguous.

warning
Warning: the SRS mapper (ExPASy)
returned a void response!

A data integration
operation received an
unexpected void response
from the data integration
mediator on ExPASy.

warning

Warning: the InSilicoSpectro MS
converter cannot correctly run! No MS
conversion will be processed!

The mass spectrometry
file parser could not run
correctly. The tool skips
the extraction of the
spectra peak lists.

error
The same RX line contains more than
one reference to MEDLINE / PubMed, is
duplicated or is badly written.

A bibliographic reference
is badly formatted.

error

You refer to a spot by an abbreviation
while there are more than 1 spot that
could fit this abbreviation.

Abbreviations are managed
by the tool (SWISS-2DPAGE
had initially some free
text annotations that
used to truncate the spot
identifiers, e.g., 11V
instead of 2D-00011V). If
a truncated identifier
may possibly refer to
several spots, an error
is generated.

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 176

error

Could not create a user to perform
queries! Please, check that you have
permissions to create postgreSQL
users, or ask the postmaster owner to
create a user called $select_user for
you.

Make2D-DB II requires
specific system
permissions to install
its various components
(system files, PostgreSQL
databases, Web server
directories,..). The tool
is prepared to manage
many conflicting
situations, but may
sometimes lack the
appropriate permissions.

note

AS you have selected the 'check-
report' method option, the process
will be resumed and will not halt --
The current entry will be escaped at
this point and the checker will go
through the next one. -- At the end of
the operation, check the
'last_STDOUT.log' file in the main
directory for a complete report of
encountered errors...

The tool encounters a
fatal error, but as it
runs under the <check-
report> option, it simply
skips the false entry and
resumes the data
analysis.

F.II.5 The relational implementation

Three possible options

The conversion process produces all the necessary ASCII tables that are imported,

almost as-is, into the relational database. Three installation options launch the relational

database installation: the <transform> option, the <create> option and the <update>

option.

The <transform> option

The <transform> option is the one that is most often chosen by users. This option

implies an initial analysis of provided data and prior conversion of this data into

Make2D-DB II ASCII tables. The relational implementation builds up the relational

database and imports the content of the ASCII tables into it.

The <create> option

Though this option is implied whenever the <transform> option is selected, it can

also be selected independently. If only the <create> option is selected (i.e., explicitly

choosing the <create> option without the <transform> option), then a new void

database is implemented. A void database has the structure and all the features of a

standard Make2D-DB II database, except that it does not contain any data.

The <update> option

This option is needed to perform batch updates on an existing database. The batch

updates include adding maps, entries and annotations, as well as modifying or erasing

parts of the database’s content. The same option is also useful to upgrade an already

existing database to a newer version of the Make2D-DB II tool, which implies a

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 177

restructuring of the relational schema. The <update> option acts as a regular

<transform> option
1
, except that it starts by extracting relevant data and metadata from

the existing database before completely replacing it with a new installation. The

ultimate task is the integration of these extracted data and metadata into the new

database. As a result, the user is presented with a new database that is an update of

his/her former database
2
.

The RDBMS implementer3

Figure F.II-4 describes the process of the relational implementation covered by the

three previous options. The process is controlled by a Perl module (the RDBMS

implementer) that manages a set of different files containing SQL commands and

PL/pgSQL scripts. The first step is to define whether the implementation should create

a new database, or update an existing one.

1 This implies that we must provide the entire set of data and annotations, as if the <transform> option was the selected

option..

2 Since version 2.60, users are no longer required to provide any data when upgrading to a newer version of the tool, as
the tool is in charge of exporting, updating with regard to external resources, and importing back the entire database
content.

3 http://mordor.isb-sib.ch/make2ddb/lib2d/make2db_POSTGRES_DB.pm

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 178

Figure F.II-4: The relational implementation of a local database.

Updating an existing database

When a user updates an existing database, the tool starts by dumping the running

database (generating a backup of its entire structure and content). It then extracts all

relevant data and metadata that will ensure continuity between the new database and

the former one. Such data include the database identifier, which has been once

generated by the tool to unequivocally identify the database by the other remote

Make2D-DB II nodes. The tool also extracts the database current version and the meta-

annotations related to the last release. The same procedure applies to the map

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 179

identifiers, as well as to the protein entry versions and their history
1
. Make2D-DB II

also uses some sequences
2
 to generate unique identifiers for experiments and

identifications, which values must be transmitted to the updated database. Annotations

that originate from external resources are ignored, since these annotations are updated

during the installation procedure of the new database.

Once the relevant data is extracted and physically stored for subsequent integration

into the new database, the entire old database is erased from the system. If the process

of setting up an updated database fails, then the tool restores entirely the erased

database.

Building up a new database

The tool connects to the PostgreSQL server to build up a new database. It also

creates two users, with appropriate permissions, to manage the database. The first user

owns the database with absolute control over it: he is the owner user. The second user

is only allowed to query the database without the right to modify it or to access its

private content: he is the select user.

Implementing the relational schema

The implementation of the relational schema reflects perfectly the data model that is

described in Chapter E. The tool starts with defining the four distinct schemas: the core

schema, the common schema, the log schema and the public schema (cf. paragraph

E.IV).

The tool then uploads a set of general functions that are used in managing the

relational installation. These functions are read from a PL/pgSQL file:

o http://mordor.isb-sib.ch/make2ddb/pgsql/make2db_functions.pgsql

It then implements the tables belonging to the core and the common schema, as well

as their related indexes. The sequences needed to generate unique identifiers are also

initialised during this step. The relational implementation relies on a specific file

containing all the SQL commands to achieve this task:

o http://mordor.isb-sib.ch/make2ddb/pgsql/make2db_tables.pgsql

While it implements the different objects, the tool grants them the appropriate usage,

so as to define the permissions given to the owner and the select users to access or to

modify each object.

The final action performed at this stage is the implementation of the different

triggers and rules associated with the tables. These triggers and rules are defined in a

separate file:

1 It is only since version 2.60 that the tool stores the entire history of protein entries.

2 Sequences are special tables used to generate integer sequences. Typically, they are used to create a unique record ID (or
key) for each row in a table.

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 180

o http://mordor.isb-sib.ch/make2ddb/pgsql/make2db_triggers.pgsql

Cloning of schemas

As soon as the relational schema and its related objects (functions, triggers, rules,

etc.) have been implemented into the core and the common schemas, the tool performs

an adapted cloning of the structure of the core schema into the log schema. This

operation starts with parsing the core schema, filters all defined constraints,

associations and existing functions out of it, and then implements the remaining

elements into the log schema. Each table implemented into the log schema is

augmented by three additional attributes to contain information on data modification.

The cloning of the core schema into the public schema is performed at a later stage.

Importing data (reading the ASCII tables)

The ASCII tables that have been built during the <transform> or the <update>

phases contain all user data. They reflect perfectly the physical relational module and

respect all the module’s constraints. The tool imports progressively the content of the

ASCII tables into the core schema. The RDBMS implementer includes a loader that

offers the developer a simple way to quickly define which relational table corresponds

to which Make2D-DB II ASCII file, as well as the order in which the tables should be

populated
1
.

Implementing data integration and materialised views functions

At this point, the functions responsible for the integration of data are implemented

within the core schema. These functions control how data collected from external

resources is merged with the local data, including the extent of data replacement. Data

integration functions are active during the database installation and during any

subsequent update of the database content.

The materialised views functions (as described in section E.V.10) are implemented

too, and like data integration functions, have also a key role during subsequent updates

of the database content.

The two following files contain all the definitions of data integration and

materialised views functions, as well as the functions responsible for showing and

hiding private data:

o http://mordor.isb-sib.ch/make2ddb/pgsql/make2db_update_internal.pgsql

o http://mordor.isb-sib.ch/make2ddb/pgsql/make2db_final_views.pgsql

1 The LOADER_FILE and the ORDER_TABLES procedures within the RDBMS implementer module

make2db_POSTGRES_DB.pm.

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 181

Generating database metadata and reorganising internal data

At this stage, metadata are evaluated and inserted into the database (cf. Figure

E.V-46: The Database common class.). Some specific data that has been imported into

the database is also revaluated.

For SWISS-2DPAGE, we also populate the GelComputableDynamic table with data

that will be accessed by remote databases via the Make2D-DB II Web services (cf.

Figure E.V-38: Data Model – Computed location of a protein on remote maps.). During

this stage, any other database that offers a means to compute the location of amino acid

sequences on its maps, like SWISS-2DPAGE, may also insert the information needed

to make this feature available (map annotations, URLs and parameters to access the

computation program)
1
.

Adapting metadata for updated databases

If a user is running an update process to an existing database, the tool performs a

special treatment to ensure continuity between his databases. The metadata that has

been extracted at a previous stage is incorporated into the newly built database.

Database release and its related dates are updated. The unique identifiers previously

attached to the former database and to its maps are kept, so that any established links

between other remote databases and the local database are not broken. In addition, the

protein entries’ versions are adapted by tracking any annotation change. This is done by

comparing the annotationChanged and the annotationCheckSum attributes of the

EntryVersionGeneral and the EntryVersion2D tables (described in section E.V.6, under

“Entry versions”) between the old and the updated database. Moreover, the tool detects

if an entry belonging to the old database has been demerged in two or in more new

entries within the updated database (either locally, or by getting the information from

UniProtKB). In case an entry demerge is detected, the demerged entries inherit their

annotation versions from the former entry to which they belonged. Such a behaviour

requires that merging several entries must not generate a new accession number.

Cloning of the public schema and exporting of non-private data into it

The tool parses each table’s structure and its related indexes from the core (and the

common) schema and rebuilds the same structure into the public schema. This

operation results in a cloned schema that does not contain any of the constraints or the

associations present in the core schema. All data, except non-private data, is exported

into the public schema.

Generating the materialised views

All the materialised views described in section E.V.10 (protein entries, map lists,

bibliographic references and identification methods) are then assembled. Technically

this operation is performed while data is exported from the core schema into the public

schema. The tool generates two versions of materialised views, one that includes all

1 The administrator of such a database should modify slightly the code of the RDBMS implementer to include his/her

database identifier and related data in the section following the “populate the GelComputableDynamic table accessed by remote
databases” commentary, and contact the tool’s developers to include an access to his program in the master distribution.

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 182

public and private data, reserved for privileged users having access to the core schema,

and one that excludes all private data, exported into the public schema for public

access.

Generating statistics and installation’s metadata

The last steps in the database implementation include statistics generation covering

the database content, the recording of technical information about the database

installation, as well as a final analysis of the entire database for access efficiency.

Exceptions / errors

As illustrated in Figure F.II-4, if the tool encounters an error at any moment during

the process of database implementation, then it erases completely the database from the

system. In an update process, the former database is immediately restored back to the

system.

F.II.6 Installation of the Web server components

Running the Web server process installs all the Web server components responsible

for making the relational database(s) and all its related documents accessible, either

locally or through the Internet. The components include:

- A main search interface to query the database(s)

- An administration interface to control and update the database(s)

- A graphical viewer / navigator for the maps

- A set of associated modules and routines

- The map images

- Documents defined by users and related to the tool, such as the private data

lists

- All provided protocol documents

- All provided identification documents and mass spectrometry peak lists

- Mass spectrometry peak viewers (the light and the extended viewers)

- The Web server configuration files that control the behaviour of the Web

interfaces

- Additional data documents extracted from remote UniProtKB

- Information about the species and the maps of the remote Make2D-DB II

Web servers with which the Web server is linked

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 183

- Generated Apache mode rewrite rules to activate logical URLs

- A set of icons

- Readme files

- Database backups (relational dumps and extended flat files), plus several

external documents

The server process is in charge of generating the needed directory structure within

the Apache directory tree, and of allocating the various components based on user

preferences. When a Web server is managing several local databases, each of them will

have separate sub-directories to hold its related data and documents. The process also

engenders the rules that make Apache understand and deal with logical URLs.

Connection between a Web server and a relational database

A Make2D-DB II Web server (or interface) is independent of any specific database,

since it accesses and administers any number of local databases. By local database, we
mean a relational database that is connected to a local Web server through direct

TCP/IP1connection. At the same time, a local database can be concurrently accessed

and managed by more than one Web server.

1 cf. glossary.

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 184

Figure F.II-5: Web servers connecting to various databases via TCP/IP
connections.

Figure F.II-5 illustrates this situation. Two distinct 2D-PAGE Web servers (servers

A1 and A2) are running on the same machine (Machine A), where three relational

Make2D-DB II databases are installed (databases A1, A2 and A3). These databases can

either be completely independent or distinct projects that are related. Web server A1

connects to the local database A1 via a TCP/IP connection. The two-headed arrow

(mutual dependence) indicates that the interface can both access and manage the

database. This is the classic situation, in which a Web server is linked to one single

database. Web server A2 connects to all three databases through the same type of

connection. Databases A1, A2 and A3 can therefore be accessed and managed by this

server. A user can access and manage database A1 using either Web Server A1 or Web

Server A2. Moreover, Web Server A2 has a direct TCP/IP connection with database

B1, which resides on another distant computer (Machine B). Since Web server A2 is

able to access and manage the distant database B1, we consider this database local to

Web server A2
1
.

Make2D-DB II Web servers have the ability to communicate among themselves

using a federated approach. A remote database is a database that is queried by a Web

server via HTTP / REST connection2. In this case, the connection is established
between the querying Web server and another remote Make2D-DB II Web server that

accesses, in its turn, the remote database. The remote Web server becomes

1 Documents that are related to database B1 which are not part of the relational implementation (map images, protocols,

identification documents, etc.) have to be physically present on machine A in order to be displayed by Web Server A2.

2 cf. glossary.

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 185

consequently a client of the querying Web server. Users can easily configure which

remote Web servers they would like to integrate within their local Web server.

Figure F.II-6: Web servers connecting amid themselves via HTTP (REST)
connections.

Let us consider Web Server A in Figure F.II-6. The server accesses a local database

(A1) on Machine A via a TCP/IP connection. At the same time, a Web server (B)

accesses locally two other databases (B1 and B2) on Machine B. Web server A

communicates with Web server B - acting as a client - via a HTTP (REST) connection.

This connection is represented by a single-headed arrow (one-way dependence). Web

server A becomes therefore able to extract resources from Web server B, thus indirectly

interrogating databases B1 and B2. For obvious security reasons, we have limited the

interaction between Web servers to the extraction of resources. Web server A can

neither alter nor manage the remote databases B1 and B2.

When a Make2D-DB II Web server is remotely contacted by another Web server,

the contacted server gives only access to its own local databases. By default, a

contacted Web server does not perform any query over its remote databases in response

to another Web server’s request. This is illustrated in Figure F.II-6. When a third Web

server (Web Portal C) contacts Web server A, the latter gives only access to its local

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 186

database A1, without enabling the HTTP connection that links it with Web server B.

However, for contacted Web servers, this default behaviour can be reversed by defining

a Web portal.

Web portals1

A Web server gives only access to local databases when it is remotely (non

interactively) contacted. Nevertheless, A Make2D-DB II user can configure his/her

server to give access to all its local and remote databases when it is contacted by

another Web server. To distinguish between the two kinds of behaviours, we choose by

convention to use the term Web portal for servers with the extended behaviour. In

Figure F.II-6 we have defined the Web server on Machine C as a Web Portal. Hence,

when a Web server (Web server D) queries Web portal C, it also indirectly contacts

Web server A and Web server B. All remote databases (A1, B1 and B2) are therefore

accessed.

Preventing cyclic loops

Given the fact that Web portals have the ability to bi-directionally contact each

other, and that the contact schema is not predetermined, it is important to deal with

potential situations in which an infinite loop may result. Figure F.II-7 shows a fictive

schema involving several Web portals: Web portal A is configured to query Web portal

B, which in its turn is configured to query Web portal C. The latter queries Web portal

D, which has been configured to query Web portal C, as well as the initial querying

Web portal A!

Figure F.II-7: Preventing cyclic loops in extended networks.

1 cf. glossary.

FF..IIII.. TThhee MMaakkee22DD--DDBB IIII ddiissttrriibbuutteedd ppaacckkaaggee

 187

We can represent this network using a directed graph, in which Web portals are the

nodes and messages are the edges. To prevent the cyclic situation that Web portal D

would cause by contacting back Web portals A and C, messages that are transmitted

from a Web portal to another include a list of all previously visited nodes, including the

transmitting node. The entire path that has been followed is therefore known by each

intermediate or final node. No query is sent again to a node of this path
1
.

It is important to note that although this solution eliminates cyclic loops, it does not

prevent a node from being part of different paths. In Figure F.II-7, if Web Portal B had

a direct connection to Web portal D, the latter would be visited twice, one time by Web

portal B, and another time by Web portal C. This might result in Web portal A - the

root - receiving twice the same data from Web portal D.

Configuration for a Web server process

As already introduced in section F.II.3, in order to run a Web server users must

provide the tool with a suitable server configuration file: the 2d_include.pl file.

Depending on the purpose, they may need either to generate a new configuration file to

set up a new server, or to adapt an existing one in order to modify an already running

server. In both cases, running the tool in the interactive <config> mode simplifies this

task. Alternatively, when dealing with an already running server, users may simply edit

its associated configuration file using any text editor.

In the server configuration file 2d_include.pl, each local database must have a

separate block that defines all its related parameters
2
. When a user installs a unique

database – like in the majority of cases - only one block is needed. If he/she decides

afterwards to include other local databases (or projects) within the same Web server,

then he/she will need to add a new block for each additional database.

At any moment, a user can also give access to one or several remote databases

through his/her Web server. Contacting a remote 2D-PAGE database is physically

performed only when end-users
3
 explicitly select the Web server associated with the

remote database from the list of enabled resources.

Including remote databases within the list of authorised resources is simply achieved

by manually adding to the basic configuration file basic_include.pl (introduced in

section F.II.3) blocks of the format:

 'Remote Web server name' => {
 URL => 'http://remote-domain/2d-server/',
 URI => 'http://remote-domain/2d-server/',
 database => ['remote database 1', .., 'remote database n'],

1 Web portals are identified by an official name (given by their maintainers). If the need arises, e.g., if two different Web

portals share the same “official” name, we may extend this definition to also include Web locations (URLs) to
distinguish between them.

2 Blocks are defined in the database section entitled “DATABASES SPECIFIC PARAMETERS” in 2d_include.pl.

3 We remind that a user refers to the person who uses the tool to build a database and publish the data, and that an end-
user is a person who accesses this data via the Web server.

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 188

 activated => [1|0]
 },

A remote Web server is defined with its common name and its Web location (URL).

URI is optional and serves only if the remote Web server does not support the Apache

mode rewrite mode
1
. The selected remote databases managed by the remote Web

server are either given as a list (separated by commas), or simply by using the keyword

‘All’ to include all available remote databases. An activation parameter can be set to 0

or to 1 to temporarily (and rapidly) deactivate and activate a remote resource. Remote

Web portals are also included using an identical syntax.

Users also define in basic_include.pl whether their Web server should act as a Web

portal client, thus contacting all its defined remote resources whenever a remote Web

server asks for it (cf. F.II.6: Web portals), or limit access to its local databases in

response to a remote query
2
.

The reason for choosing to define this information in basic_include.pl, rather than in

the personal configuration file 2d_include.pl, is that basic_include.pl is not frequently

modified by average users. This is to prevent an unnecessary over exploitation of

remote accesses, since an abuse on the number of simultaneously accessed resources

tends to significantly slow down a Web server performance. Since the latest versions of

the tool, SWISS-2DPAGE and the World-2DPAGE Portal - and more recently World-

2DPAGE Repository - are activated by default.

Running the Make2D-DB II server process

The Web server process is executed by running the tool with the <server>, the

<update> or the <transform> options; the two last options acting as a shortcut to

execute successively the <check>, the <create> and the <server> options while

updating or installing a new local database.

In the majority of cases, users who are using the tool install at the beginning a single

database and assign a new Web server dedicated to query the database. Therefore, they

create a new server configuration file containing one database block. After the database

implementation is over, the tool proceeds to implement the Web server components. If

the user has full write permissions into the Apache directories, then the server

installation will be carried out without interruption. Otherwise, the installation is not

performed and the tool invites the user to enable these permissions, or to login using a

user ID that gives write permissions into the Apache directories
3
. To resume the

interrupted operation, the user should execute once more the tool, this time using the

<server> option.

1 Since for remote Web servers not supporting the Apache mode rewrite rules, the URL must point to the main interface

script, i.e., URL => ‘http://remote-domain/cgi-bin/2d-server/2d.cgi’.

2 The $SERVER::onlyInterfaces and the $SERVER::PortalWebService parameters in basic_include.pl.

3 Typical UNIX users having full write permissions into the Apache directories may be ‘http’, ‘apache’ or ‘nobody’, as well
as ‘root’.

FF..IIIIII.. TThhee cceennttrraall ddaattaa iinntteeggrraattiioonn mmeeddiiaattoorr

 189

If a user is updating the content of his/her database or is upgrading to a new version

of the tool using the <update> option, then he/she does not need to provide any new

server configuration file. When the tool does not find a new server configuration file, it

looks for the one that is associated with the already running Web server
1
. Nonetheless,

the tool recommends the generation of a new configuration file for upgrades between

major releases of the tool (from version 0.x to version, 1.x, or from version 1.x to

version 2.x).

Adding a new database that has been built using the <transform> option to an

already running server does not explicitly require generating a new server configuration

file. By selecting “Changing a Running Server Parameters” in the <config> mode, the

previous configuration of the running Web server may simply be interactively modified

to include the database as an additional new local database.

The <server> option can also be executed independently in order to set up a Web

server or a Web portal with no local databases, and that gives a simultaneous access to

other remote Web servers. No main configuration file for local databases – as defined

in F.II.3 - is therefore required.

Web server components, features and interactions are described in more details in

Chapter G.

F.III. The central data integration mediator

Reinforcing the federated approach using a central mediator

Make2D-DB II Web servers communicate autonomously between themselves using

a federated approach, in which they exchange data and mutually understand each other.

However, data originating from other resources need to be transformed first into a

structure that is compliant with the tool. In data integration, the component that is

responsible for converting data from a source data format into a destination data format

is called a mediator (cf. Chapter D.). The mediator maps data elements from the source

to the destination and performs all required transformations. In bioinformatics,

resources are subject to many changes regarding their format, structure and

accessibility. The central mediator guarantees continuity of data integration, even when

a resource modifies its data exchange format, or when a resource changes its physical

location.

Connections between remote Make2D-DB II implementations and the residing

ExPASy mediator are activated from the start of the database creation and throughout

the database life, assuming that the database maintainers perform regular updates of

their database. The mediator understands query messages sent by remote Make2D-DB

II servers and knows how to accurately extract the required data from a range of

distributed resources. Moreover, it knows how to deal with all versions of the tool that

may differ by the messages they are sending to the mediator and the data they expect to

1 The user can also direct the tool to use an alternative configuration file by giving its path.

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 190

receive. Another advantage is the possibility to extend or replace initial resources by

analogous ones when appropriate, without the need to update the remote installations’

behaviour. In addition, the mediator keeps the remote installations aware of the

existence of each other, thus letting them establish direct links between themselves.

Two main components: the file extractor and the data mediator

The central data integration mediator (Figure F.III-1) is composed of two separate

components, the file extractor and the data mediator. We will simply refer to the latter

as the mediator. Conceptually, there is no fundamental difference between the two

components. They play the same role in interpreting received queries, gathering the

corresponding data and sending it back to the caller. The main difference resides in the

level of transformation that they apply on the data before sending it back. While the file

extractor is mainly concerned by text files, transferring them with minimal restructuring

of their content, the mediator deals with much more complex data representations,

originating from various sources. Both components are not restricted to work with

Make2D-DB II. They can be easily extended in order to perform general data

integration mediation and file extraction.

Figure F.III-1: The central data integration mediator and file extractor on ExPASy.

FF..IIIIII.. TThhee cceennttrraall ddaattaa iinntteeggrraattiioonn mmeeddiiaattoorr

 191

The file extractor1

The file extractor is a simple Web script that is triggered by direct HTTP GET

queries. It receives a simple argument asking to receive a text file that is present on the

ExPASy server. It also can be asked to send a specific portion of a file’s content that

contain a particular piece of information. The script provides Make2D-DB II remote

databases with the most up-to-date versions of a collection of files, in particular the

database cross-reference list and the tissue list, both maintained by the Swiss-Prot

group. The script is also able to extract some metadata required by the remote

installation, which include the tissue list version, the current database release numbers

of UniProtKB/Swiss-Prot and UniProtKB/TrEMBL, along with their release dates. An

argument non-recognised by the script is assumed a name of a text file that the caller

wants to extract from the ExPASy server. The only condition is that the file is present

in a directory containing exclusively public data.

Some examples of files and information extraction are given below:

o http://www.expasy.org/cgi-bin/txt_on_web.cgi?DbCrossRefs.txt

o http://www.expasy.org/cgi-bin/txt_on_web.cgi?tisslist.txt

o http://www.expasy.org/cgi-bin/txt_on_web.cgi?UniProt:version

o http://www.expasy.org/cgi-bin/txt_on_web.cgi?Swiss-Prot:date

Make2D-DB II developers must check regularly for any change on ExPASy that

would affect file extraction. On several occasions, the file extractor had to be slightly

adjusted in order to conform to changes related to file locations. When the raw list of

tissues also recently changed the format of its content, the script was adapted to provide

older versions of the tool with the same file format as callers expect to receive.

The mediator2

Initially, the mediator has been developed to work with SRS - the Sequence

Retrieval System (Etzold, Argos 1993) - to extract data from local or remote SRS

servers. Consequently, its data exchange protocol reflects a SRS style. The mediator is

contacted by simple HTTP POST queries and returns semi-structured text responses.

The process makes use of a generic query language. The caller defines a specific

database or resource to retrieve data from (e.g., UniProtKB, NEWT, etc.), a method of

retrieval from the resource (SRS/getz or SRS/wgetz, SQL, etc.), the list and the type of

identifiers to look for and the type of output fields to receive. For example, a caller may

ask to receive all cross-references and feature keys of a list of UniProtKB entries by

sending to the mediator a list of accession numbers and by selecting UniProtKB and the

SRS retrieval method.

1 http://mordor.isb-sib.ch/make2ddb/expasy/txt_on_web.cgi

2 http://www.expasy.org/cgi-bin/getz_syntax_mapper.cgi, only POST queries are allowed.

CChhaapptteerr FF.. MMaakkee22DD--DDBB IIII EEnnvviirroonnmmeenntt:: CCoommppoonneennttss aanndd IImmpplleemmeennttaattiioonn

 192

The mediator has the ability to communicate with tools other than Make2D-DB II

and therefore expects from the caller to declare its identity - which can be for example a

Make2D-DB II server - and to optionally give its version. This helps the mediator to

adapt its exchange protocols, and the mapping applied on data, depending on which

tool and tool’s version is the caller. This also helps the mediator to limit or to assign a

list of pre-defined resources to a particular tool. In theory, the list of resources can be

unlimited. Nevertheless, for the time being, the choice of accessible resources is limited

to those needed by Make2D-DB II. The following resources are currently covered:

UniProtKB/Swiss-Prot, UniProtKB/TrEMBL, NEWT and SWISS-2DPAGE, as well as

a set of remote 2D-PAGE resources.

The mediator includes a list of registered Make2D-DB II servers and their remote

databases. This list is maintained by the Proteome Informatics Group. Any Make2D-

DB II Web server is able to retrieve this list in order to automatically establish up-to-

date cross-links between its own databases and the remote databases of registered

servers.

Adapt to changes concerning data resources

The most vital role of the mediator is to ensure that any change related to the

location or to the format of a resource does not affect Make2D-DB II distributed

systems. For example, UniProtKB should migrate in 2008 from the ExPASy server to a

new dedicated server
1
 and should benefit from a renewed interface to access data. This

new interface allows direct and refined retrieval of data by using simple HTTP GET

queries. Consequently, the mediator will have to adapt its behaviour, replacing all its

SRS extraction procedures by GET queries (the UniProtKB SRS server will be no

longer maintained). Such changes can be operated without disturbing the good

functioning of remote Make2D-DB II servers.

The following address gives access to the mediator implementation:

o http://mordor.isb-sib.ch/make2ddb/expasy/getz_syntax_mapper.cgi

F.IV. The package content

The distributed package elements are described at the following address:

� http://world-2dpage.expasy.org/make2ddb/1.Readme_main.html#package

To make easier the parsing of the documents, manuals and scripts for readers of this

manuscript, we made them available at the following address:

� http://mordor.isb-sib.ch/make2ddb/

1 http://www.uniprot.org

FF..IIVV.. TThhee ppaacckkaaggee ccoonntteenntt

 193

We have also provided a FAQ page for users to post their questions and

observations and to report unexpected bugs:

� http://world-2dpage.expasy.org/make2ddb/faq.html

Make2D-DB II is an open source project. It follows the Artistic Licence directives
1
,

except that claiming fees out of it is prohibited. The tool’s license
2
 insists on the fact

that modified versions should clearly be labelled as modified. Since each individual

database and its associated Web server can be part of the global virtual 2D-PAGE

environment, it is imperative to know whether they are perfectly compliant with the

other “official” installations or whether data exchange should be treated with caution.

The tool is developed and managed under Concurrent Versions System (CVS)
3
 to

keep track of changes and consecutive distributed versions of the tool.

Make2D-DB II license:

ORIGINAL LICENSE:

The Make2D-DB II tool is
(c) Copyright 2002 Swiss Institute of Bioinformatics
 All Rights Reserved.
 Author: Khaled Mostaguir (khaled.mostaguir@isb-sib.ch)

==

PERMISSION TO USE, COPY AND DISTRIBUTE THIS TOOL, INCLUDING ALL OR ANY OF
ITS COMPONENTS, IS HEREBY GRANTED FOR ANY PURPOSE EXCEPT FOR CLAIMING FEES
OUT OF THE TOOL (AS A WHOLE OR AS COMPONENTS).

THIS ENTIRE NOTICE SHOULD BE INCLUDED IN ALL DISTRIBUTED COPIES AND IN ALL
MODIFIED VERSIONS OF THIS TOOL, AS WELL AS IN ALL TOOLS THAT USE SOME OF ITS
COMPONENTS.

MODIFIED VERSIONS SHOULD CLEARLY STATE BEING MODIFIED IN AN ADDITIONAL NOTE.

THIS TOOL IS PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED WARRANTY. IN
PARTICULAR, THE AUTHOR DOES NOT MAKE ANY REPRESENTATION OR WARRANTY OF ANY
KIND CONCERNING THE MERCHANTABILITY OF THIS TOOL OR ITS FITNESS FOR ANY
PARTICULAR PURPOSE.

1 http://www.perlfoundation.org/artistic_license_2_0

2 http://www.expasy.org/ch2d/make2ddb/License.txt

3 http://www.nongnu.org/cvs/, cf. glossary.

195

C h a p t e r ����

CHAPTER G. MAKE2D-DB II WEB SERVERS

A data management and integration system relies heavily on suitably

designed interfaces in order to be efficient and usable.

Interactively, a Web site giving access to database content must be easy to use
and should provide information that is not hard to read. At the same time, data
integration operations should be technically simple and intuitive, to guarantee a

better interoperability with disparate systems.

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 196

G.I. Introduction

A Make2D-DB II Web server consists of a set of user interfaces and software

interfaces running on a Web server and accessible over the Internet. The user interfaces

are interactive interfaces that enable people to interact with the system, while the

software interfaces are in charge of the interoperability of the system with other remote

systems.

Here are four duties handled by the interfaces:

� Give interactive access and display the content of local and remote databases

� Extract or refer to objects within local databases

� Administer the Web server and update local databases

� Ensure bi-directional data exchange and data integration with other remote

resources

An illustrative Web server, Test-2DPAGE, has been set up for Make2D-DB II users

to demonstrate the tool. It has the reference name 2d_test and it accesses three

independent databases / projects, respectively named: Test-2DPAGE I, Test-2DPAGE

II and Test-2DPAGE III. All data in Test-2DPAGE is purely fictive and serves only to

illustrate the tool. This Web server is accessible at the following address:

o http://mordor.isb-sib.ch/2d_test/ (cf. note below)

Two additional Web servers, the SWISS-2DPAGE database and the World-

2DPAGE Portal will also help us to illustrate some examples throughout this chapter.

These two resources are located at the following address:

o http://www.expasy.org/swiss-2dpage/ (SWISS-2DPAGE search engine)

o http://world-2dpage.expasy.org/portal/ (World-2DPAGE Portal)

� Note: In March 2008, the Test-2DPAGE Web server will move
to http://world-2dpage.expasy.org/test-2dpage/.
Consequently, this new domain name should also replace the
one used in any subsequent URLs referring to the test
database.

GG..IIII.. OOvveerrvviieeww ooff tthhee WWeebb ccoommppoonneennttss aanndd tthheeiirr iinntteerraaccttiioonnss

 197

G.II. Overview of the Web components and their interactions

Figure G.II-1 gives a schematic overview of the Web server components and their

local and remote interactions. The main entry point to a Web server is the main

interface, from which one can interrogate local and remote databases, trigger data

viewers, activate the privileged users’ mode for full private data access, or switch to the

administration interface
1
.

Figure G.II-1: Schematic overview of Web servers’ components and interactions.

The main interface

The main interface gives direct access to all local databases that are associated with

the Web server. Only public data can be accessed, except for privileged users who must

provide an appropriate password in order to access private (hidden) data
2
. Access to the

main interface can be performed interactively or non-interactively, in order to display,

extract or integrate local data.

1 Components of the Web server are accessible at http://mordor.isb-sib.ch/make2ddb/http_server/

2 Privileged users’ passwords are encrypted and saved in a cookie that expires after 12 hours, or when users log out.

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 198

Access to remote databases is also performed from the main interface. Data

exchange is then carried out between the local main interface and the distant Web

servers in control of the remote databases. The exchange is bi-directional since remote

Web servers that want to interrogate local databases can send their queries in the same

manner to the main interface of the local Web server.

A Web portal is limited to a main interface and its associated procedures, with no

direct access to any local data, or to any administration interface. Queries can therefore

be only performed by exchanging data with remote Make2D-DB II Web servers.

The administration interface

The administration interface is a clone of the main interface that is supplemented

with procedures for data administration. These procedures are in charge of managing

all local databases associated with the Web server, as well as handling databases’

metadata and performing database export operations.

Mainly, the administration procedures are responsible for updating the database

content with regard to data integrated from various external resources, and by means of

the ExPASy-resident central data integration mediator (F.III). Moreover, the list of

currently available remote Make2D-DB II databases - provided by the central mediator

- allows the administration interface to contact these remote databases and to generate

up-to-date cross-references with them. Cross-references are based on common entities,

such as common protein entries, maps of same species and/or tissue, etc. All data

integration processes are unidirectional: the remote installations act only as data

providers without being able to interrogate an administration interface.

The administration interface offers the same search features as those presented by

the main interface, but the search operations are expanded to include all private data

and are limited to local databases. Only interactive access is allowed. Access to the

interface is reserved for administrators thanks to a highly secured and password

protected mechanism.

Data viewers

Data viewers are components that display data graphically in an interactive manner.

Several data viewers are associated with the main and the administration interfaces.

The viewers consist of a map navigator, a mass spectrometry peak list displayer, and a

mass spectrometry browser. The map navigator and the mass spectrometry browser can

be launched as standalone viewers, independently from the other interfaces.

Accessing the Web server’s main entry

When users set up a Web server using the <server> option (F.II.6), they define a

reference name to be associated with their 2D-PAGE server. This name is not

necessarily the name of any of the local Make2dB-DB II databases managed by the

server
1
, but rather a reference that, when added to the domain name

1
 of the running

1 Usually, users that install a Web server to manage a single local database/project fairly tend to assign the same name to

both their Web server and their database.

GG..IIIIII.. TThhee mmaaiinn iinntteerrffaaccee

 199

HTTP Apache server, forms the URL address to access the Make2D-DB II server, such

as in:

� http://domain/2d_server/

Example:

o Test 2D-PAGE: http://mordor.isb-sib.ch/2d_test/

o SWISS-2DPAGE: http://www.expasy.org/swiss-2dpage/

This URL redirects to the script of the main interface, which in most standard

installations (depending on users’ configuration parameters) is physically

located at:

� http://domain/cgi-bin/2d_server/2d.cgi

Example:

o Test 2D-PAGE: http://mordor.isb-sib.ch/cgi-bin/2d_test/2d.cgi
2

o SWISS-2DPAGE: http://www.expasy.org/cgi-bin/swiss-2dpage/2d.cgi

The domain name is either a public Web hostname, or just a restricted domain

accessible only by one or several local machines.

G.III. The main interface

G.III.1 The interactive mode

In the interactive mode, the main interface presents facts and metadata about the

Web server and offers end-users numerous search and parsing features that satisfy their

most frequent queries (Figure G.III-1). The interface is simple and intuitive.

Administrators have a large control over the look and feel of the interface through the

server configuration file (F.II.3), and, for further refinement, through the modification

of its associated Cascading Style Sheets (CSS)
3
. All displayed or generated Web pages

are fully HTML 4.01 compliant
4
.

1 cf. http://en.wikipedia.org/wiki/Domain_name

2 To be replaced by “http://world-2dpage.expasy.org/test-2dpage/cgi-bin/2d.cgi” starting from February 2008.

3 The shared_definitions subroutine in 2d_util.pl.

4 Following the W3C recommendations at http://www.w3.org/TR/REC-html40/

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 200

Figure G.III-1: Home page of the main interface (Test-2DPAGE).

The main area is the place where information is presented, queries are executed, and

results viewed. The home page displays user-defined headings and automatically

generated statistics covering the content of each local database, in addition to contact

information and related resources. Access to the administration interface or logging in

for privileged users
1
 is also performed from here. For query results, clicking on the

name or the image of any listed object within the main area fetches the object’s default

representation. For a map, experimental information and the list of identified spots are

1 In order to access hidden data on the Test-2DPAGE Web server, readers of this manuscript should login as privileged

users using the password ‘private’.

GG..IIIIII.. TThhee mmaaiinn iinntteerrffaaccee

 201

displayed. For a map’s thumbnail, graphical navigation is initiated. For a protein, the

full-annotated entry is displayed. For a spot, its map’s location is graphically shown

with experimental annotation at display. Clicking on an identification method of a spot

displays all related experimental data and analysis documents.

Search menu

A list of search options is available through the search menu area. End-users can

perform specific queries against any local or remote database by selecting one of the

pre-defined search options.

Search by accession number

The accession number search option retrieves protein entries that correspond to a

given primary or secondary accession number (AC) or a protein identifier (ID). A list of

all proteins from an entire database or from some particular maps can be displayed

beforehand. Entries’ output can be requested in different formats.

The most comprehensive view is the ‘Nice View’ output format. It displays protein

annotations and its history, bibliographic references, corresponding maps, spot physical

properties and identification evidence in an exhaustive HTML display enriched with

clickable objects and many local and external links. An automatically incorporated list

of cross-references to other remote Make2D-DB II databases is also in display. If the

protein is cross-referenced to an entry from the protein main index (UniProtKB),

theoretical computation of the expected pI/Mw values of the protein and its known

fragments is proposed
1
. A list of remote maps over which the protein location can be

estimated is also displayed (for the time being, only SWISS-2DPAGE maps are

accessible). An ending section gives additional related annotations extracted from

UniProtKB. In particular, annotated keywords
2
 and a comprehensive list of cross-

references to many other remote resources are available from this section. Figure

G.III-2 shows parts of the sections of this comprehensive view
3
.

Search by description, entry name, gene name or UniProtKB keyword

End-users can also retrieve protein entries that contain a specific keyword within

their description, their entry name, their gene name (including aliases, ORF and OLN),

or their associated keywords. The search can be extended to include external

UniProtKB annotations with regard to the local proteins.

Search by author

The search by author option retrieves all authors who worked on one or several

entries. Inversely, a list of all entries corresponding to a particular author may also be

retrieved.

1 By directing to the “Compute pI/Mw tool ” on the ExPASy server: http://www.expasy.org/tools/pi_tool.html

2 http://www.expasy.org/sprot/userman.html#KW_line

3 Example given for <P02760> at http://mordor.isb-sib.ch/2d_test/ac=P02760&database=test-2dpage_I

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 202

Figure G.III-2: A protein entry in the ‘Nice view’ format – displaying various
sections.

Search by spot ID / serial number

With this option, it is possible to search for a particular spot, or to list all spots for a

particular map.

GG..IIIIII.. TThhee mmaaiinn iinntteerrffaaccee

 203

Like many other search options, the search by spot ID displays a list of maps

grouped by species from which the user can choose. The list includes all maps from

local databases, as well as those from remote databases. Information covering the latter

is dynamically extracted from the remote Web servers upon end-users’ request and is

stored inside the local Web server for a limited lap of time
1
. Extracting information

dynamically from remote Web servers is a time-consuming task. Storing temporarily

this information within the local Web server is a compromise between providing up-to-

date data and guaranteeing a rapid execution of queries
2
.

Search by identification method

Spots identified by a particular identification method can be listed using this search

option. The search can combine several selected identification methods, and the result

displays clickable hits that redirect to the corresponding experimental data.

Identification methods are defined in the basic_include.pl configuration file (F.II.3).

The default list comprises many methods, ranging from PMF, Tandem MS, Amino

Acid Composition, to Micro-Sequencing, Gel Matching, etc. All added user-defined

identification methods are also part of this list. By default, the tool proposes this same

list to end-users to select from. However, administrators can configure the tool to show

a shorter list limited to the methods actually available for the currently selected local

database. Restricting the identification methods to those from one local database is

appropriate when querying only local databases, but it limits the search possibilities in

case remote databases are queried concurrently.

Search by pI / Mw range

Spots that are located within a range of pI and Mw values can be retrieved using this

search option. The pI range is ignored for SDS-PAGE gels.

Search by combined fields

The most exhaustive form of search engines is the search by combined fields

interface. End-users can build their most complex queries by means of a SRS-like

query interface (Figure G.III-3). Search by keywords can be performed against any type

of data and can be combined in any order using logical operators. Inclusive and

exclusive statements can be expressed. Input fields are grouped in blocks – whose

number can be extended - to simulate parenthesis segments, like in a logical expression.

Hits may be filtered to only retain those prior and/or subsequent to defined dates,

regarding entries creation and annotation modifications. Moreover, end-users can

extend the parsed data types to include related UniProtKB data. They may choose the

output data types and may export results into plain or tab-delimited text files.

1 By default, information related to the remote maps expires within 72 hours of local storing.

2 Extraction is limited to remote Web servers, and is deactivated for remote Web portals that have no local databases.

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 204

Figure G.III-3: The ‘search by combined fields’ interface – A SRS-like search
engine.

Thanks to the use of this interface, particularly complex queries can be expressed,

like for example:

GG..IIIIII.. TThhee mmaaiinn iinntteerrffaaccee

 205

“List all Homo sapiens identified proteins in liver that are involved in ATP-binding
activity, and for which the gene names contain ‘clp’ but not ‘htpM’ or ‘htpN’. The work
must have been published by author ‘Smith’ in journal ‘Proteomics’. Spots must have been
identified by mass spectrometry and the identified proteins should have a cross-reference
to UniProtKB. Display only those that have been modified since last year”.

We may argue that it might have been better to group all the search options in a

unique search interface especially as, in fact, the search by combined fields engine can

effectively include all the mentioned search options. However, we have estimated that

for a simple access, and in order to refine some specific queries, proposing separated

simple search options makes the use of the search interface easier and more intuitive. In

addition, extending the currently available list of search options by adding new options

is a straightforward task for developers. The prospective extension depends only on

users’ needs and feedback.

Map access

This part is specific to data related to available maps of local and remote databases.

Experimental info

This option displays experimental information, origin, links to gel preparation

protocols and gel informatics, applied identification methods, and map’s metadata for a

selected map (Figure G.III-4).

Figure G.III-4: Map’s experimental information.

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 206

Protein list

The protein list option lists in a table all the protein entries identified for a given

map, with related 2-DE information: spot identifiers, experimental pI, Mw and relative

volume and density (read from gel). Identification procedures and their corresponding

annotations are also listed, as well as all bibliographic references. The output table can

be exported as a plain or a tab-delimited text file.

Graphical viewer

The graphical viewer button directs to the map navigator interface, which is a

standalone viewer to navigate through the various local maps.

Container for unidentified spots

For all the previously mentioned search engines, database administrators may allow

privileged end-users to access unidentified spots or spots to which no protein has been

yet definitively assigned. The access also includes the spots’ analysis data hidden from

public end-users. Make2D-DB II presents unidentified spots to privileged end-users

within a unique container, similar to a protein entry, which has the identifier

‘UNIDENTIFIED_SPOTS’
1
.

Databases’ selection area

Web servers that access several local and remote databases present a list of available

resources in the databases’ selection area. Users can select one or several local

databases and/or remote Web servers (interfaces) to query at once. The output result

clearly states the origin of the resulting hits and permits further navigation through

related information (Figure G.III-5). Depending on the Make2D-DB II version running

on the remote Web server, the calling Web server is able to estimate when a specific

query can be fully, partially, or not at all interpreted by the remote server and it tries

therefore to adapt the query. A message addressed to end-users indicates potential

incompatibilities each time the version of a contacted Web server is prior to that of the

calling server.

Accessing simultaneously too many remote databases is an issue that should be

considered. The time needed to establish HTTP connections depends on several factors

(Web traffic, number of remote Web servers, accessibility and size of remote databases,

the amount of exchanged data, etc.). Besides, selecting remote Web portals implies an

additional amount of time for these portals to contacts their associated remote Web

servers. We have experimented many different situations. For example, we

simultaneously contacted a dozen of local databases and remote Web servers, as well as

a Web portal that contacts, in its turn, eight remote Web servers. The result was rather

satisfactory, as the waiting time for a moderate query (searching ‘atp’ in protein

annotations) did not exceed 60 seconds. Nonetheless, the issue must be taken into

account, especially to anticipate future situations where a much larger number of

1 By connecting to the Test-2DPAGE database and providing the privileged users password ‘private’, readers can access

this unidentified spots’ container. The container becomes visible, for example, by listing all the proteins using the
search by accession number option.

GG..IIIIII.. TThhee mmaaiinn iinntteerrffaaccee

 207

remote Make2D-DB II Web servers and portals will become available all over the

Web. Some technical solutions are proposed in the chapter covering the tool’s

perspectives.

Figure G.III-5: Querying several remote Make2D-DB II Web servers at once.

G.III.2 Referencing or extracting data in the non-interactive mode

The non-interactive mode is intended to reference objects, as well as to perform data

integration operations.

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 208

Logical and physical URLs

The Apache mode rewrite mode
1,2
 offers a powerful URL manipulation mechanism

through the rewriting of the requested URL on the fly based on configuration directives

and rules. This feature lets a HTTP server understand logical URLs and translate them

into physical URLs that reflect the architecture of the server directory tree
3
. Logical

URLs have the advantage of being descriptive, self-explanatory and intuitive, as

opposed to physical URLs, which point to a physical Web page or to a Web script with

a set of optional arguments.

In Make2D-DB II, logical URLs are theoretically formed by a URI
4
 (Uniform

Resource Identifier), which locates a specific object over the Web, as well as a number

of optional and definite directives to apply to that object in a REST
5
 manner. An object

can be a map, a spot, an identification experiment or a protein
6
, while the associated

directives define the desired format, the purpose and the actions to perform. Formats

are either plain text, HTML, or XML formats. The purpose represents the aim: a

machine extraction, a text-based display or a graphical representation, while the action

to perform is applied to limit the extracted data to a subpart of the data and/or to extend

it with additional data. In Make2D-DB II, logical URLs follow a very simple and

intuitive formulation, in which objects, formats, purposes and actions are pre-defined

terms that could be extended should the need arise.

Physical URLs point simply to the script of the main Web interface (2d.cgi),

followed by a set of arguments that defines the object and the associated directives in a

manner close to the logical URLs’ logic. Logical and physical URLs coexist, which

means that the tool is able to interpret both syntaxes.

Derived objects are additional “objects” other than regular maps, spots,

identification experiments and protein objects. Either they are derived entities that are

extracted from a Make2D-DB II Web server, for data integration purpose, or they are

reserved keywords used to formulate search queries. In both cases, they are considered

as an answer to a question and are treated using the same logic as with logical objects.

Therefore, in order to extract a derived object, a question mark “?” in the logical URL

is needed to formulate the appropriate query.

The knowledge of the formalism used in the non-interactive mode is essential in

data extraction and data integration operations, and the use of logical URLs rather than

physical URLs ensures much more stability. Table G.III-1 lists some representative

examples of logical and physical URLs’ formulation. By convention, variable

parameters are in italic and all URLs are lowercased. Many URLs can be expressed in

1 http://mordor.isb-sib.ch/make2ddb/readme/4.Readme_interface.html#modeRewrite

2 http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html

3 cf. glossary: URL.

4 cf. glossary: URI

5 cf. glossary.

6 Objects may be extended to other entities, like projects, bibliographic references, etc.

GG..IIIIII.. TThhee mmaaiinn iinntteerrffaaccee

 209

different manners: a formal manner and convenient shortcuts (informal). Arguments are

separated by “&” characters and may have aliases (e.g., database and db). Several

values can be given to an argument using “+” signs (e.g., database=project1+project2)

or using the keyword ‘all’. For the formal format, the order of arguments does not have

any consequence on the interpretation of the URL.

Table G.III-1: Representative examples of logical URLs’ formulation.

Purpose

Access directly a specific protein entry object from a Web server that manages
a single local database

1
. The protein is designated using its accession number.

By default, format is HTML and purpose is text display. No special action is
performed.

Physical URL http://domain/cgi-bin/2d-server/2d.cgi?ac=accession°

Logical URL

Formally: http://domain/2d-server/protein/accession°

Shortcut: http://domain/2d-server/entry/accession°

Shortcut: http://domain/2d-server/accession°

Example http://www.expasy.org/swiss-2dpage/P18335 (informal)

Purpose
Extract a specific entry from a local database (project) that is part of a Web
interface managing several local databases

2
. Format is raw (unformatted text)

and the purpose is an extraction for machine processing (cf. Web page source).

Physical URL http://domain/cgi-bin/2d-server/2d.cgi?database=project&ac=accession_number
&format=raw&extract

Logical URL
Formally: http://domain/2d-server/accession°&database=project&format=raw&extract

A shortcut: http://domain/project/accession°&format=raw&extract

Example http://mordor.isb-sib.ch/test-2dpage_ii/P58771&format=raw&extract (informal)

Purpose
View a specific map (graphical representation). Scale the image to n and
include some (or “all”) identified proteins in the display.

Physical URL http://domain/cgi-bin/2d-server/2d_view_map.cgi?map=map&ac=accession°&scale=n

Logical URL http://domain/2d-server/map/map&ac=accession°&view=image&scale=n

Example http://www.expasy.org/swiss-2dpage/map/ecoli&ac=all&view=image&scale=2

1 In single database installations, the Web server and the local database generally share the same name (2d-server /

database); e.g., “swiss-2dpage” refers to both the SWISS-2DPAGE database and its Web server’s reference name.

2 For Web servers that manage several local databases, in case the database argument is omitted, the first local database
(the default database) is then automatically selected..

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 210

Purpose

For a defined spot, display all data related to a specific identification method. A
spot identifier is defined in Make2D-DB II using the identifier of the map
containing the spot, followed by a semicolon and the local identifier of the spot
within its map (cf. E.V.4).

Physical URL http://domain/cgi-bin/2d-server/2d.cgi?db=project&spot=spotID&data=identification

Logical URL
Formally: http://domain2d-server/spot/spot=spotID&data=identification&db=project

A shortcut: http:// domain/project/spot/spotID&data=identification

Example http://mordor.isb-sib.ch/2d_test/spot/spot=plasma2:89&data=msms&db=test-2dpage_i

Purpose Extracting a derived object.

Physical URL http:// domain/cgi-bin/2d-server/2d.cgi?DerivedObject[&argument[=value]]

Logical URL http://domain/2d-server/?DerivedObject[&argument[=value]]

Examples

http://www.expasy.org/swiss-2dpage/?maplist&format=text (display a list of all maps)

http://www.expasy.org/swiss-2dpage/?author=appel&extract (extract all entries for author
“appel”)

While installing a Web server, Make2D-DB II automatically generates the complete

set of rewriting rules and functions needed by the HTTP server in order to interpret

logical URLs and to suitably redirect them to the corresponding physical URLs. The

rules depend on the user’s configuration parameters, as well as on the number of

managed local databases. Activating the rules is a user’s choice and it only requires

him/her to include them within the HTTP server configuration file. An example of

generated rules and functions set for a Web server 2d that manages two databases

test_2dpage_i and test_2dpage_ii can be found at:

o http://mordor.isb-sib.ch/make2ddb/readme/examples/mod_rewrite.txt

o http://mordor.isb-sib.ch/make2ddb/readme/examples/make2db_map.txt

Adopting a logical syntax to access or extract objects enhances and simplifies the

interconnection of remote resources in a federated system. This is the reason why we

are trying to reinforce federation rules - as described in C.IV.2 - by proposing to extract

and to refer to objects using simple but expressive URIs. Another obvious advantage,

besides the intuitive way to extract objects and to formulate queries, is the ability to

unambiguously refer to each object in any type of reports or publications.

GG..IIIIII.. TThhee mmaaiinn iinntteerrffaaccee

 211

Referring to the search engines

The search engines described in G.III.1 can each be directly triggered using logical

URLs of the form:

o http://domain/database/?option (e.g., http://www.expasy.org/swiss-2dpage/?ac)

Where option is one of the self-explanatory keywords: ac, id, de, ge, author, spot,

ident, pi_mw, combined, map and mapExpInfo, which correspond to the various search

options.

Data exchange

The distributed Web servers interact and exchange data using HTTP GET and POST

queries in a REST manner. The interaction is performed by means of the formalism

presented in the previous section, whether the logical URLs’ mode is set active or is

disabled.

Currently, the data exchange process relies on a defined set of statements that are

specific to the federated Make2D-DB II systems. Data is retrieved mostly in a semi-

structured text format that the tool knows how to interpret. Besides being able to

remotely perform all standard search options on any remote interface, a local Web

server can also extract additional data (or metadata) regarding the remote installations

by using the extract purpose. This additional data is considered derived objects and

includes the version of the remote Make2D-DB II installation (using the keyword

make2d), a list of the remote databases (databaseList), a list of all maps and their

related species and annotations (mapList), database statistics (stats), etc. An important

feature is the ability to retrieve all identified proteins that have a cross-reference to the

UniProtKB main index
1
 or to the SWISS-2DPAGE secondary index

2

(index[=indexNumber°], cf. also E.V.7). The importance resides in the fact that

federated or third-party systems and resources, such as the distributed Make2D-DB II

systems and UniProtKB, can easily establish cross-references between their protein

entries, their studied species or their maps, and those from the contacted Make2D-DB

Web server.

The current list of extractible data and the output formats cover the vital

requirements to interconnect distributed Make2D-DB II systems and to link to any

object within these systems. Further developments of the tool should expand the

interaction, not only among Make2D-DB II systems, but also between Make2D-DB II

and third-party systems, such as the Proteome Database System (C.IV.5) and

PROTICdb (C.IV.6). This will certainly imply more derived objects, such as the GO

terms (E.V.6: Gene ontology classification), more directives, and a more generic format

for data output (preferably a generic XML format). Extending the extraction

capabilities is a straightforward task for developers. Each object, or derived object,

needs to be first recognised by the interface. A set of SQL queries associated with this

1 e.g., page source of http://mordor.isb-sib.ch/cgi-bin/2d_test/2d.cgi?index&database=test-2dpage_i&extract

2 e.g., page source of http://mordor.isb-sib.ch/cgi-bin/2d_test/2d.cgi?index=3&database=test-2dpage_ii&extract

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 212

object is generated, based on the input directives, and is then executed. The result is

handed to the appropriate output routine, depending on the required format.

G.IV. Data viewers

There are three viewers, generally accessed from the main interface. Viewers are

associated with different objects and can be interactively triggered by clicking on their

related objects.

The map navigator

In a 2D-PAGE environment, it is essential to visualise the maps and the physical

location of the spots that have been identified. The map navigator is a standalone

graphical viewer that is intended to visualise and navigate through the maps of all local

databases (Figure G.IV-1-A). The viewer displays an image of the selected map, which

can be rescaled. Identified spots - and upon request unidentified spots - are displayed.

Identified spots are marked thanks to a range of different symbols that visually indicate

their identification methods. Depending on the user’s choice, the view can be limited to

one particular protein, or to spots that have been identified by one or several

identification methods.

GG..IIVV.. DDaattaa vviieewweerrss

 213

Figure G.IV-1: The map navigator (A) and the spot displayer (B).

Dragging the mouse pointer over any spot displays a small box that shows the spot

physical properties and all its assigned proteins. This box also shows a list of all

identification methods that have been applied to the spot, as well as a summary of

available experimental data. To access the full annotations related to a spot and its

assigned proteins, one can simply apply a mouse click over the spot. The viewer is also

accessible from the main interface and can be triggered by clicking on a spot, which

displays the location of the clicked spot over its map and, optionally, all potential

isoforms of the protein(s) assigned to that spot (Figure G.IV-1-B).

Referencing objects in the graphical representation can be done by a formalism

similar to the one used in the non-interactive mode of the main interface (to visualise an

entire map, a single spot, all spots belonging to a specific protein, etc.). The map

navigator can be directly accessed via the address:

o http://domain/2d-server/2d_view_map.cgi

or, with logical URLs activated:

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 214

o http://domain/2d-server/viewer (e.g., http://mordor.isb-sib.ch/2d_test/viewer)

The mass spectrometry peak list viewer

This viewer is a small utility that display a quick view of the mass spectrometry

peak lists when the latter are listed within the main interface. It is a java based program,

and is therefore present in most standard installations.

The mass spectrometry browser (GDchart)

Like the map navigator, the mass spectrometry browser is an interactive standalone

viewer that is also attached to the main interface (Figure G.IV-2). The browser is

accessible whenever the main interface displays mass spectrometry identification

results. It displays information regarding the MS identification and the local identifiers

assigned to it. It also distinctively displays retained and non-retained peaks if the

distinction is given by data providers. Being built over some graphical C libraries, the

viewer is the only Make2D-DB II component that requires compiling non-standard

components. Therefore, it might be not present in some Make2D-DB II installations.

In the standalone mode
1
, the browser lets users surf between all PMF and tandem

MS experimental data and identification analysis regarding any spot. For a selected

spot, all its related MS identifications are listed with their identifiers, and each spectrum

can be individually displayed. Like many other objects within the Make2D-DB II

environment, the spectrum of a mass spectrometry analysis can be directly referenced

by a unique URL. For instance, in the following URL:

o http://mordor.isb-sib.ch/cgi-bin/2d_test/GDchart.cgi?spectra

&database=test_2page_i&spot=111&map=plasma2&ac=P02760

&data=msms&expid=13&identid=13&range=180-430

We designate a spectrum object and we select an identified spot (by its local

database, map identifier, local spot identifier and identified protein). We name the type

of data (msms for tandem MS), the experiment / spectrum identifier and the

identification analysis identifier (as several identification analyses may be associated to

one MS spectrum, cf. E.V.5). We can also define a range of m/Z values to limit the

display to a subset of peaks
2
.

1 cf. http://mordor.isb-sib.ch/cgi-bin/2d_test/GDchart.cgi

2 In future developments, we may also add a threshold value or a range for the intensities to filter the peaks.

GG..VV.. TThhee aaddmmiinniissttrraattiioonn iinntteerrffaaccee

 215

Figure G.IV-2: The mass spectrometry browser.

G.V. The administration interface

Local databases are managed and updated - with regard to external resources - by

means of the administration interface, which can be accessed from the main interface,

or directly at the URL:

� http://domain/2d_server/admin/

Database administrators enjoy full permissions to perform all administration tasks

by providing the required PostgreSQL connection parameters to login. Two parameters

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 216

are required: the database owner identifier and his/her password. When several local

databases are managed by the same Web server, the PostgreSQL database name must

also be given. The login procedure is a time-dependant secured process that encrypts

the login parameters and makes any connection available during only one hour.

Connections also expire after 30 minutes of inactivity
1
.

In order to offer readers of this manuscript an access to the functionalities of the

administration interface, we have reduced the security requirements to connect to one

of the local databases of the Test-2DPAGE Web server at:

o http://mordor.isb-sib.ch/2d_test/admin/

Readers are required to provide the following connection parameters to login: ID =

‘select2d’, pass = ‘select2d’ and database = ‘test_2dpage_iii’. This login ensures an

access to the administration interface and to all private data of Test-2DPAGE III, but

without the ability to modify or to update the database content
2
.

G.V.1 The search options

Since the administration interface is an extended clone of the main interface, all the

search options of the main interface are available, except that only the local database

that is being updated is active. Data is retrieved from the relational core schema and not

from the public schema (cf. E.IV), which means that all private data and annotations of

unidentified spots are accessible. Data viewers launched from the administration

interface also give full access to the core schema and to all its private data.

G.V.2 The administration commands

Different update commands are available and can be performed independently.

Highlighting any of these commands expands an associated area with related options

(Figure G.V-1).

1 Depending on how security parameters for TCP/IP connections are configured for the running PostgreSQL server,

some installations may give access to the main page of the administration interface without verifying PostgreSQL
connection parameters. Nevertheless, no data access or data modification will be allowed unless the correct parameters
are provided.

2 Readers who are interested in having full permissions, in order to test the effects of performing updates and data
modifications, may contact us to obtain the appropriate login parameters.

GG..VV.. TThhee aaddmmiinniissttrraattiioonn iinntteerrffaaccee

 217

Figure G.V-1: The administration interface main page (the administration
commands).

Managing views, statistics and subtitles

Views and Web server location

As described in E.V.10, views are collections of diverse data grouped together to

form a particular data representation that is displayed to end-users (e.g., a protein

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 218

entry). After modifying or updating the content of the core schema, administrators

choose the moment when to reflect their changes on the different views. Updating the

views can be restricted to the core schema, which means that changes will become

visible only to administrators and privileged users. At the chosen moment, the entire

core schema content, including the views, can be exported to the public schema, thus

making changes also visible to public end-users.

The update functions also detect any change of the Web server location (URL), and

consequently update the DynamicRemoteMake2DDBInterface table. Updating this

table is valuable for future development plans regarding an increased independence of

distributed Make2D-DB II systems, as described in E.V.8: Connecting to remote 2-DE

databases.

Statistics and Web server subtitles

From this area, administrators can maintain up-to-date statistics and edit their Web

server subtitles. Statistics and subtitles are visible to end-users when they access the

Web server home page. They serve to describe and to display facts about the local

databases.

Managing external data

Integrating data from external resources into the database (cf. F.III) is performed

from this area. Two distinct categories are available and can be executed separately:

UniProtKB /General annotations for the proteins

This prompts the system to contact the central data integration mediator on the

ExPASy server to extract up-to-date protein annotations from UniProtKB and related

non 2D-PAGE resources. Updated documents listing remote databases’ locations,

tissue names, etc., are imported and integrated as well.

2D data

This prompts the system to contact each registered Make2D-DB II Web server in

order to establish and/or to update cross-references between the local database and the

remote databases of the registered Web servers.

Data integration can be performed at different depths. Administrators choose the

level with which local data is replaced by imported data (low, partial or full level). The

lowest level replaces inner data with external one only if the former is not defined,

while the highest level replaces any inner annotation if a new external annotation of the

same type is available (e.g., replacing protein identifiers by those extracted from

UniProtKB or redefining organism classifications).

Increment entry version

Increment of the versions of protein entries depends on the annotationChanged flags

as describe in E.V.6: Entry versions. This mechanism can be activated or deactivated

from this area. Activating this option turns on the annotationChanged flags for any

entry that has been modified due to an annotation update.

GG..VV.. TThhee aaddmmiinniissttrraattiioonn iinntteerrffaaccee

 219

Update entry versions / Annotate and publish a database release

This area controls entry versions, database publication and metadata.

Update entry versions

At any moment, administrators can perform a version increment on all protein

entries that have an annotationChanged flag turned on. The increment of the general

and the 2D-PAGE entry versions is performed independently.

Annotate and publish a database

As described in E.V.13, database releases are intended for end-users as a milestone

to indicate significant changes in a database’s content. At any moment, in particular

following a major database update, administrators can consolidate all recent changes,

export them into the public schema, and publish a new database release. Depending on

the importance of recent changes, a new full release or a new sub-release can be

selected. The editable release details, regarding the database in its new version, are

different types of metadata that are visible to the public (e.g., release data and notes,

contact person, etc.).

Export and backup data

Currently, databases can be exported in two formats: A flat file format, readable by

humans (protein perspective) and containing the required data to rebuild the database

anywhere else using the Make2D-DB II tool, and a SQL dump format, which is the

common format to export or backup a relational database content. The flat file export is

a protein-centred perspective based on the protein entry views (E.V.10) followed by a

section listing the physical properties of the spots and their locations. In future

developments, and as a means to export data to third-party systems, a generic spot

perspective in XML format
1
 will be proposed.

Hide/show data

These commands control which maps, which protein entries and which spots should

be hidden from public. Identification analysis and results regarding a specific spot, a

specific protein or a whole map can also be made invisible. All these commands access

the figurative ShowOrHideObject interface introduced in E.V: The Gel Class.

Clean database

Performing many deletion and update operations on a relational database produces a

decrease in the database performance due to records’ fragmentation. Administrators can

defragment their databases when query execution becomes slow. A more important fact

to consider is that since any modification applied to the database content is reported

into the log schema (E.V.13: Operation dates and history of data modifications),

performing many updates inflates the size of the database in the long run. Emptying the

backup clears history records and stores it in an external SQL dump file that can be

restored if the need arises.

1 The structure of the spot perspective format should be consistent with ongoing PSI recommendations.

CChhaapptteerr GG.. MMaakkee22DD--DDBB IIII WWeebb SSeerrvveerrss

 220

The administration interface also gives advanced users a SQL direct access to the

database content to perform SQL queries and to execute functions and commands.

G.V.3 Performance of the administration interface

To simplify management operations, we have grouped many processes in a minimal

set of batch commands and functions that can be easily executed by administrators with

very few interactive clicks. Collecting external sets of data, integrating them into the

core system, updating the views and exporting all new modifications to the public

schema requires an amount of time that significantly depends on many factors. Like

with the main search interface, the Web traffic and the number of external resources

that are contacted have a great influence on the execution time. In addition, performing

the integration of collected data, generating the views and exporting all changes to

public access is carried out by functions based on SQL commands, which can be a long

process, depending on the size of the local dataset. The duration of an update should

not be a major concern, except that many batch operations are technically performed

one after another during a single instance of HTTP connection (Web based connection).

Therefore, exposure to timed-out
1
 connections is likely; causing an interruption of the

processes that are launched on the relational server and resulting in some unachieved

operations
2
.

There are two possible alternatives in future developments to prevent this kind of

situations if they persist. We can decompose the grouped batch operations into their

components, and request the administrators to execute each component independently

from the others, thus reducing the set of commands to run during one instance of HTTP

connection. Unfortunately, this is done at the cost of reducing the simplicity and the

intuitiveness of the update management. Currently, a decomposition of batch

operations is already partially offered via the administration interface, since exporting

data to the public schema can always be deactivated during any batch process and can

be performed independently. The second alternative is to develop a non Web-based

interface that creates limited and independent instances of HTTP connections to collect

data, and then executes batch operations on the local relational server via the more

stable TCP/IP connections. The limitation is that the non Web-based interface needs to

be installed and accessed from the same computer where the Make2D-DB II Web

server is running. Feedback from users will give more insight on the necessity to offer

these management alternatives with the distributed Make2D-DB II package.

G.VI. Extending the Web interfaces

Developing and extending the Web server functionalities is made in concert with the

implemented relational model (E.IV). Therefore, any development must remain

synchronised with the model’s evolution. At the same time, a high degree of abstraction

regarding the data model has been reinforced in order to ensure long-term stability of

1 A network parameter related to an enforced event designed to occur at the conclusion of a predetermined elapsed time.

2 We have experienced this situation in some occasions while interactively updating the SWISS-2DPAGE database.

GG..VVII.. EExxtteennddiinngg tthhee WWeebb iinntteerrffaacceess

 221

data exchange operations between the distributed Make2D-DB II systems, since these

systems may differ by their data models (i.e., their package’s versions). For example,

fetching a particular object in a specific format from a Make2D-DB II system is always

performed with the same logic. The result always produces the same type of output,

regardless of how data is modelled and stored in the queried system.

Currently, Web interfaces do not make full use of the possibilities offered by the

implemented data model. Further developments of Web interfaces should gradually

integrate more objects and annotations that are already part of the data model. This

includes the dealings with distinct projects within the same local database, the

description of biosource materials and preparation protocols, the generation of other

forms of materialised views, a more efficient use of GO terms in annotations, in data

integration and in cross-referencing, etc. Simultaneously, the data analyser and

converter (F.II.4) should be prepared - when necessary - to populate the relational

database with additional data types extracted from text files that follow a predefined

structure (plain text, XML or CSV formats) and/or from standard PSI documents, such

as the PSI-MIAPE (C.IV.8) and GelML documents (Jones, Gibson 2007).

An important subproject for future development is the conception of an additional

annotation interface to interactively add, remove or modify annotations in an existing

database, instead of using the non-interactive <update> option (cf. F.II.5). Developing

such an interface requires a significant effort because of the evolution of the relational

schema and the many indirect associations between the relations (e.g., associations

controlled by triggers). Some basic prototypes have already been developed but they

lack enough generalization to easily adapt to the constant changes of the data model.

Efficient solutions should mainly centre on object-relational mapping techniques that

replace direct persistence-related database accesses with high-level object handling

(e.g., Java Hibernate
1
) or on the Model-View-Controller (MVC)

2
 abstraction approach

offered by some advanced development frameworks (e.g., some Smalltalk frameworks
3

or Ruby on Rails
4
). These solutions are generic enough to properly handle the

complexity of the Make2D-DB II data model but require a substantial time to be

implemented.

1 http://www.hibernate.org/

2 cf. Glossary. The MVC approach is already used to some extent in the main and the administration Web interfaces of
Make2D-Db II.

3 http://www.smalltalk.org/main/

4 http://www.rubyonrails.org/

223

C h a p t e r ����

CHAPTER H. ACHIEVEMENTS AND TECHNICAL
PERSPECTIVES

Was Make2D-DB II able to provide scientists with a functional integrative

solution to manage and publish gel-based data? What are the implementations
needed to make the environment more robust?

CChhaapptteerr HH.. AAcchhiieevveemmeennttss aanndd TTeecchhnniiccaall PPeerrssppeeccttiivveess

 224

H.I. Characteristics of the Make2D-DB II environment

We have previously listed some of the main characteristics of Make2D-DB II (Table

D.VI-2), and compared them with a list of representative management and integration

systems. The environment is a federated 2-DE environment with a mediator support for

remote data integration. Data is distributed over a network of remote independent nodes

that communicate together, using simple REST protocols. The local schemas of the

different versions of the tool are not necessarily identical and a federated transaction

sharing approach (D.II.3) is therefore used to guarantee the federation of all nodes, the

mediator being theoretically based on a local-as-view approach (LAV, cf. D.IV.1). Part

of the non 2-DE data is warehoused, which makes the environment not purely specific

to one single integration approach. Most of the distributed 2-DE data is dynamically

accessed on the fly, while non 2-DE data and a small part of 2-DE data need periodic

data updates to be warehoused by each node. The tool relies on a set of data exchange

operations that primarily aim to ensure intercommunication between the nodes. These

data exchange operations can be easily extended in order to communicate with other

systems by using agreed-on data exchange structures.

At the management level, the tool ensures a high level of data consistency thanks to

an object-relational structure, and to an evolving and powerful data model. Efficiency is

guaranteed by an extensive use of materialised views. Data preparation, input and

update are straightforward. The tool also fulfils its objective of making very simple for

biologists the publication of their data on the Web.

H.II. History of the package releases

Since the beginning, the project has always followed the main defined objectives

(E.II). Make2D-DB II was developed using a bottom-up approach. The core of the

central model has been built originally to handle the existing SWISS-2DPAGE (and

similar databases) data representation. It then expanded and became more generic with

subsequent versions.

The initial versions of Make2D-DB II were made available for EBP partners (E.I.1)

in 2003. At that time, the tool was limited in functionality and was only able to deal

with flat files. Nevertheless, it was already possible to perform queries against distant

databases. Part of the data belonging to the EBP project was collected by our group and

was made available to the project partners through a dedicated server
1
. The interaction

with the EBP partners significantly helped in further developments of the tool, in

particular in making the tool more accessible for people with little computer science

expertise.

1 http://mordor.isb-sib.ch/ebp/

HH..IIII.. HHiissttoorryy ooff tthhee ppaacckkaaggee rreelleeaasseess

 225

Concurrently, SWISS-2DPAGE was also converted into the new relational format

and was hosted during three years in an alternative Web site. In 2006, the new

installation definitively substituted the former official SWISS-2DPAGE installation

running on the ExPASy server.

Public releases

Since the beginning of the public distribution of the package, we have maintained

contacts with many users to assist them to install and to use the tool. The same contacts

also significantly helped us to fix many problems and to improve the functionality of

the tool, which was continuously extended.

The first public release was made available in October 2003. This version was a beta

release that required many fixes. This version was improved twice in 2004 by two new

releases. In April 2005, the first official stable version was made available and was

followed, in December 2005, by a second major version with extended features. The

last public release to be published was made available in September 2006. We expect to

replace this release in spring 2008 by the one that has been developed during 2007 and

the beginning of 2008.

Technical details regarding the evolution of the tool are given at the address:

� http://world-2dpage.expasy.org/make2ddb/changes.txt

Due to the adopted federated approach, we always had to ensure that each new

version was fully compatible with all preceding versions of the tool. This was important

since most users do not necessarily update their installations when a new version is

available. We also had to systematically check the compatibility of the tool with all

new versions of third-party software required to run the tool (PostgreSQL, Apache,

Perl, InSilicoSpectro, etc.).

In order to download the tool, users are required to register by providing some

personal information
1
. The registration form also asks them whether they would like to

receive updates regarding new releases and fixed bugs. Table H.II-1 displays the

number of public downloads from the ExPASy server since June 2003. There have

been 253 downloads in total by 208 different users, using 203 distinct e-mail addresses.

Downloads originated from 208 different organisations from all over the world. These

organisations include a large number of universities, institutes, research centres, as well

as a number of business companies.

1 http://www.expasy.org/ch2d/make2ddb.html

CChhaapptteerr HH.. AAcchhiieevveemmeennttss aanndd TTeecchhnniiccaall PPeerrssppeeccttiivveess

 226

Table H.II-1: Make2D-DB II public releases.

Version Availability Date Downloads Remarks

0.25 June 2003 N/A Reserved for EBP partners upon request

0.40 October 2003 23 First public release (test version)

0.89 April 2004 30 Many improvements

0.95 November 2004 30 Many improvements

1.00 April 2005 37 First official major release

2.00 December 2005 56 Second official major release

2.50.1 September 2006 77 Many improvements

2.50.2 Spring 2007 N/A Internal version applied to SIB databases,

portals and repositories

2.60.1 Scheduled for spring 2008 N/A In development

We estimate that approximately half of the time needed to develop Make2D-DB II

was spent in building up Web interactive interfaces. Since we had to find an

equilibrium between the conceptual development and the implementation of interfaces,

the current Web interfaces do not entirely cover all the features expressed by the

implemented data model. For example, project and protocol elements are not fully

presented by the web interfaces, and data integration based on Gene Ontology is not

operational yet, despite the fact that these concepts are fully integrated within the

physically implemented data model (E.IV). A significant amount of time was also

needed to test the tool with different sets of input data, on different systems, with

different versions of third-party software, and using different combinations of

parameters and configurations. We tried as much as we could to reach a balance

between the available resources, the time at hand, the conceptual ideas and the building

up of a pragmatic and working integration system. To optimise prospective

developments, many features that are not operational yet have been suitably

implemented in a way that makes their future activation straightforward.

H.III. Available Make2D-DB II resources

H.III.1 Remote Make2D-DB II databases

There are currently several public and private remote databases built using our tool.

Since we have been contacted by many users for technical assistance during the setting

up of their databases, we are aware of the existence of a number of databases that are

not part of the public domain. All databases developed in business companies belong to

this category.

HH..IIIIII.. AAvvaaiillaabbllee MMaakkee22DD--DDBB IIII rreessoouurrcceess

 227

More importantly for the proteomics community, many 2D-PAGE resources have

already joined the Make2D-DB II public environment. Most of these resources are new

databases. However, part of them is formerly existent databases that have been

converted into the new environment.

Almost all public databases are installed using one of the official versions of

Make2D-DB II. However, one public database, 2Dbase-Ecoli (Table H.III-1) includes a

feature added by the database developers, a comparison procedure between maps based

on protein functional categories
1
 (Vijayendran et al. 2007). This illustrates the

possibility for third-party developers to easily include additional functionalities to the

open source code of Make2D-DB II.

Table H.III-1: Some public 2-DE databases built with Make2D-DB II.

Database Institution
Species
(tissue)

Number
of maps2

Identified
spots /
proteins

Make2D-DB II
version

SWISS-2DPAGE
Swiss Institute of Bioinformatics,

Geneva, Switzerland
Various

(various)

36 3976

1265

2.50.2

http://www.expasy.org/swiss-2dpage/, http://www.expasy.org/ch2d/

Rreproduction-
2DPAGE

Lab of Reproductive Medicine,
Nanjing Medical University, P.

R. China

Human and
Mouse

(testis / ovary)

6 2605

1172

2.50.1

http://reprod.njmu.edu.cn/2d/

CompluYeast
2D-PAGE DB

Department of Microbiology,
Faculty of Pharmacy,

Complutense University,
Madrid, Spain

Yeast 16 546

169

2.50.1

http://compluyeast2dpage.dacya.ucm.es/cgi-bin/2d/2d.cgi

CIPRO
2D-PAGE

Institute for Bioinformatics
Research and Development,

Japan Science and Technology
Agency, Saitama, Japan

Ciona
intestinalis

4 492

276

2.50.1

http://cipro.ibio.jp/~ueno/2d_page/cgi-bin/2d/2d.cgi

2Dbase
Ecoli

Fermentation Engineering
Group, University of Bielfield,

Germany

Escherichia coli 14 1185

723

2.01.a Modified
version

http://2dbase.techfak.uni-bielefeld.de/

1 http://2dbase.techfak.uni-bielefeld.de/cgi-bin/2d/2d_compare_gels.cgi

2 For February 2008

CChhaapptteerr HH.. AAcchhiieevveemmeennttss aanndd TTeecchhnniiccaall PPeerrssppeeccttiivveess

 228

DOSAC-COBS
2D PAGE

DOSAC – COBS Proteomics
and Genomics Study Group,
University of Palermo, Italy

Human

(various)

9 909

160

2.00.1

http://www.dosac.unipa.it/2d/

Peroxisomal
2D-PAGE

Department of Cell and
Molecular Biology, Upsala

University, Sweden

Mus musculus

 (liver)

2 135

66

2.00.1

http://www.sbc.su.se/~jia/2D/

Cornea
2DPAGE

Department of Molecular
Biology, University of Aarhus,

Denmark

Human

(cornea)

5 268

67

1.00.a

http://www.cornea-proteomics.com/

Plasmo
2DBase

Indian Institute of Science,
Bangalore, India

Plasmodium
falciparum

15 51

16

1.00.a

http://utlab3.biochem.iisc.ernet.in/Plasmo2Dbase/

KAIKO 2D
DataBase

The Silkworm Genome
Research Program, National
Institute of Agrobiological
Sciences, Ibaraki, Japan

Silkworm 116 N/A

N/A

1.00.a

http://kaiko2ddb.dna.affrc.go.jp/

Additional resources are in a process of adhering to the public Make2D-DB II

environment in 2008. In particular, the Siena-2DPAGE database from the Department

of Molecular Biology (University of Siena, Italy) that has been previously published on

the Web using the former Make2ddb tool (Table C.IV-4). 2-DE resources from the

Proteome Research Centre at UCD Conway Institute of Biomolecular and Biomedical

Research
1
 (University College Dublin, Ireland) are also expected to adhere to the

environment shortly.

H.III.2 World-2DPAGE Portal

In 2006, we have launched World-2DPAGE Portal, the first dynamic 2D-PAGE

portal to query simultaneously worldwide gel-based proteomics databases:

� http://world-2dpage.expasy.org/portal/
2

This portal is simply a Web interface accessing on the fly other remote Make2D-DB

II Web servers from all over the world. Therefore, it can be seen as a virtual unique

database. Our group has chosen a set of available remote resources with a particular

interest for the proteomics community. However, the list of resources offered is

1 http://www.ucd.ie/conway/Integrative_proteome.html

2 Redirecting to http://www.expasy.org/world-2dpage/

HH..IIIIII.. AAvvaaiillaabbllee MMaakkee22DD--DDBB IIII rreessoouurrcceess

 229

intentionally limited to databases using the UniProtKB protein index or including

cross-references to UniProtKB, since these databases benefit from a higher degree of

data integration. In December 2007, the portal was already linked to 8 remote Web

servers / 10 remote databases, totalising 91 reference maps and nearly 10300 identified

spots from 10 different organisms, which makes it the largest gel-based proteomics

database accessible from a single entry point. Additional 2-DE resources will soon be

included within the portal.

Similarly, any organisation can easily set up analogous portals using the Make2D-

DB II package. Portals are easily configurable and can include any number of remote

Make2D-DB II Web servers and/or portals (F.II.6 - Web portals).

We have chosen to integrate an access to World-2DPAGE Portal within the

distributed package of Make2D-DB II. Hence, end-users are able, from any remote

Web server, to effortlessly select the World-2DPAGE portal for their queries.

Figure H.III-1: World-2DPAGE Portal.

H.III.3 World-2DPAGE Repository

World-2DPAGE Repository (Hoogland et al. 2008) is the recently created

supplement to World-2DPAGE Portal. Since Make2D-DB II has the ability to build

and access any number of local databases, setting up a repository of 2-DE databases

CChhaapptteerr HH.. AAcchhiieevveemmeennttss aanndd TTeecchhnniiccaall PPeerrssppeeccttiivveess

 230

was an unproblematic task. World-2DPAGE Repository is a public standards-

compliant repository that aims to host gel-based proteomics data with protein

identifications published in the literature. It aims to support laboratories that do not

have the means of hosting a database containing their data. The repository is accessible

at:

� http://world-2dpage.expasy.org/repository/

Data from two publications (Plikat et al. 2007; Li et al. 2007) are already accessible.

They include four 2-DE image maps with nearly 1200 identified spots. In addition, all

is in place to add more datasets. Authors can easily submit their published gel-based

proteomics data through a form at:

� http://world-2dpage.expasy.org/submission/

Submitters are asked to upload gel image(s), spot identification list(s), annotations,

and MS data (if any). They are also asked to give relevant information on publications

and experimental protocols, such as PSI-MIAPE documents (cf. C.IV.8 and E.IV.2 -

References to external data documents). To help submitters to create PSI-MIAPE

documents, our group has developed MIAPEGelDB
1
, a tool that interactively generates

and stores PSI-MIAPE documents through a self-documenting web interface. The more

information is given, the better the annotation of the datasets will be.

 In the event that a dataset was already submitted as MS identification data to the

PRIDE repository (C.V.2), the same files can be reused for submission to the World-

2DPAGE Repository without any additional work. Bi-directional cross-references

between World-2DPAGE and PRIDE have been set up to offer a smooth navigation

between both repositories. Therefore, upon manuscript submission to proteomics

journals, we encourage authors to submit their MS data to PRIDE, and their gel-based

data (as well as their MS data) to World-2DPAGE. Our repository supports data

privacy, allowing temporary data restriction to registered users only (the submitters,

their collaborators, the journal editor and the article reviewers). Data is

straightforwardly promoted to public access upon authors’ decision or typically upon

acceptance of the corresponding article. Public datasets from the World-2DPAGE

Repository become automatically part of the World-2DPAGE Portal, thanks to the Web

server interconnection described in F.II.6 / Figure F.II-6.

Because of the amount of local datasets that we expect to gradually append to the

new repository, we plan an imminent reorganisation of the repository Web interface

(Figure H.III-2). A list of submitted databases, clustered by organisms, by tissues, by

pI/Mw range, or by other characteristics, should then be presented to end-users. Thus,

users can target their queries to a limited set of data resources related to their specific

interests.

1 By Xavier Robin and Christine Hoogland (Proteome Informatics Group, SIB), http://miapegeldb.expasy.org/

HH..IIIIII.. AAvvaaiillaabbllee MMaakkee22DD--DDBB IIII rreessoouurrcceess

 231

Figure H.III-2: World-2DPAGE Repository.

End-users should then be presented with a list of submitted databases clustered by

organisms, by tissues, or by other characteristics, so that queries can be targeted to a

limited set of data resources with relation to specific interests.

H.III.4 Grouping 2-DE resources: The World-2DPAGE Constellation

The WORLD-2DPAGE Constellation has been set up to group together the many

gel-based resources proposed by SIB. It is represents the home page of the recently

created ExPASy 2D-PAGE domain name:

� http://world-2dpage.expasy.org/

World-2DPAGE Constellation offers a direct access to the Make2D-DB II based

resources: World-2DPAGE Portal, World-2DPAGE Repository, SWISS-2DPAGE and

Make2D-DB II Web server, as well as to WORLD-2DPAGE List (C.IV.4) and World-

2DPAGE Repository submission form. Information and news regarding these many

resources, or any other future resources, can therefore be rapidly consulted (and the

resources accessed) from this insightful Web address.

CChhaapptteerr HH.. AAcchhiieevveemmeennttss aanndd TTeecchhnniiccaall PPeerrssppeeccttiivveess

 232

H.IV. Perspectives

Make2D-DB II is still an ongoing project that can and should be extended in many

different aspects. At the data model level, we have already discussed in Chapter E. the

many implemented but not fully activated concepts that will need additional

developments to make the environment more global and integrative (inclusion of

additional external resources, use of GO terms and tissue classification to compare

related data, cross-linking of similar maps between distant databases, etc). We have

also presented in Chapter F. some of the limitations regarding data input, which are the

unavoidable consequences of the friendly but low structured data input formats

currently in use (spreadsheets / flat files). The Web interfaces and the search engines,

which were presented in Chapter G. , do not presently take full advantage of the entire

potential of the implemented data model. Further development of these interfaces is

needed in order to handle a wider range of important features and queries that may be

required by researchers (search by projects and studies, comparison of protein

expression, inclusion of third-party analysis software, etc). Data updates should also be

made simpler by means of an interactive interface rather than by providing text files

and performing shell commands.

In the immediate future, some newly added features have to be completed and

tested, and some minor bugs should be fixed, before the version currently in

development (2.60) is released. The new version should be available in spring 2008.

Most notably, this version will include a queriable archive system of modified protein

entries (E.V.6 - Archiving modified entries) and a more automatic process to update

already running installations into the most recent version of the tool (F.II.5 - The

<update> option). Making the update process easier is important, since many users are

not instinctively willing to reinstall their already running databases. By encouraging

users to update their personal public installations, we ensure that the whole Make2D-

DB II community will efficiently benefit from the most up-to-date functionalities of the

tool, regardless of the origin of the distributed data.

H.IV.1 Short-term perspectives

The short-term perspectives are additional functionalities that represent important

add-ons and that should not require large development efforts and resources.

Extending data integration capabilities

An imminent feature that should immediately generate a significant gain in data

integration capabilities is the automatic assimilation of Gene ontology classification

terms within the protein annotations (E.V.6 - Gene ontology classification). The

process would mainly rely on the extracted UniProtKB cross-references to GO, as well

as on the integrated UniProtKB keywords, since the mapping of the latter with GO

terms is becoming increasingly reliable. Protein classification and clustering should

consequently become possible over several remote databases, which is valuable in

comparative studies.

Another significant development would be to extend the support for project,

biosource and study annotations (E.V.2) - and for comparative studies, to extend

HH..IIVV.. PPeerrssppeeccttiivveess

 233

analyte annotations (E.V.3). Such a development would require to broaden the structure

of the data input files and/or to extract annotations from documents that follow the

ongoing PSI recommendations covering these subjects. We may also reinforce tissue

annotations by promoting a more sophisticated tissue classification to share amongst

users (as described in E.V.2 - The Tissue classes).

Although the current listing of related objects (e.g., related maps, studied organisms

or tissues) is partially achieved using the combined search option over several remote

Web servers (e.g., via a Make2D-DB II portal), such developments would expand the

prospect of permanently linking all related objects between remote 2-DE databases. For

instance, this could be achieved by locally storing multi-directional cross-references,

which implies to implement and to periodically update ObjectDynamic classes (e.g.,

OrganismDynamic and TissueDynmaic classes) like the currently implemented

GelDynamic class (E.V.8 - Remote gels).

Importing annotations

Importing directly data from PSI and MIAPE documents into the relational system

should be promoted as soon as these documents become stable. Documents describing

gel protocols, gel informatics and identification evidence will certainly be provided not

only as supporting documents, but will also provide the relational implementation with

relevant data. The gel protocol classes (E.V.3 - The Gel protocols) and the

identification subsystems (E.V.5 - The predefined identification subsystems) are likely

to be the first classes concerned with any upcoming document-based data extraction.

Extending data exchange formalism and formats

For the moment, the logical URL formalism and the resulting output formats used

by the environment are primarily intended to exchange data between the federated

remote Make2D-DB II nodes, and to extract or refer to objects in a specific format

(G.III.2). The current formalism needs to be more expressive and the formats to be

more generic, in order to reinforce data exchange between the environment and other

integration systems. Since a generic XML format seems a practical choice, the tool

must be provided with a generic procedure to export data in this structure. For better

efficiency, much of the work needed to nest data should be performed at the relational

database level. Object views could be generated in the same way we already pre-

process the plain materialised views (E.V.10). Providing XML-based views for data

exchange will not necessitate the use of Web service SOAP protocols for

interoperability, since we believe that REST, combined with logical URLs, can achieve

the same objective in a much simpler way.

By pre-processing data this way, we will also be able to export directly database

content in XML format, along with the existing exports in extended flat file and dump

formats (G.V.2), which is convenient for the distribution of databases. The XML

structure reflecting the protein perspective should be intuitive to define. However,

defining at this stage the XML structure from the more “natural” gel/spot perspective

may lead users to confusion and undermine the PSI recommendations in 2-DE data

representations, which are still in progress.

CChhaapptteerr HH.. AAcchhiieevveemmeennttss aanndd TTeecchhnniiccaall PPeerrssppeeccttiivveess

 234

Enhancing the data update procedure

To add or modify local data within an already installed database, users are required

to provide all their previous non-modified data and use the batch <update> option

(G.VI). This approach is not user-friendly and can be improved by requiring users to

provide only their new data. Modified data and data to be deleted will then need a new

mechanism to be erased from the system. This mechanism should offer a way to

express data to be deleted. However, expressing in a simple way which data has been

modified is rather a complex task. In case not enough resources can be allocated to the

development of an interactive annotation interface, dedicating some resources to set up

this mechanism would be valuable for many users.

H.IV.2 Long-term perspectives

Long-term perspectives are developments that require more available resources and

time. They also reflect concerns about long-term behaviour and stability of the system,

and potential solutions to overcome them.

The Web-based annotation interface

We have already commented on the development of an annotation environment to

interactively add, remove or modify annotations in an existing database, instead of

using the non-interactive <update> option. We estimate that the best way is to adopt an

object-relational mapping solution, or a Model-View-Controller approach, which are

generic enough to cope with the complexity, the evolvement and the decentralisation of

the Make2D-DB II environment (G.VI). We estimate the development time to be at

least of 4 to 6 months of dedicated work by a single person. The development of such

an environment will therefore depend on the resources attributed to the project in the

future.

Accessing an increasing number of distributed databases

Up to now, we have not experienced any particular problem while querying

simultaneously many remote Web servers. However, we cannot entirely predict the

system behaviour when it will have to deal with a considerably large number of

distributed resources at once, which is likely to happen, in particular with the World-

2DPAGE Portal and Repository. A main concern is the common problem of timeout.

We previously mentioned the possibility of clustering databases in order to reduce the

queried ones to those of interest (H.III.3), which can be done by analysing and locally

storing the databases’ exportable statistics. Other alternatives may include the use of

AJAX technology (Asynchronous JavaScript and XML)
1
 to increase responsiveness

and interactivity and which results in pushing data asynchronously. Similar results can

be achieved by splitting the Web-based interactive process into many parallel non-

interactive and independent processes that each contacts a single node and delivers the

received answers in a common container that is continuously accessed by the

interactive Web interface using pushovers.

1 cf. glossary.

HH..IIVV.. PPeerrssppeeccttiivveess

 235

Currently, when end-users perform queries on several remote databases at once, data

is presented as a list of consolidated objects, which clearly states the origin of each

object. In the long run, and with a rising number of remote resources, we may make

abstraction of the origin of data and concentrate on the merging of objects (Join

operations), thus avoiding long and unreadable lists of objects that may contain

redundancy.

Encouraging the top-down approach in annotations

Make2D-DB II has been developed using a bottom-up approach, which was

essentially due to practical considerations. We wanted to deliver a working system to

manage 2-DE datasets that follow a protein-based perspective, and in a relatively short

period. However, we progressively managed to extend the data model to cover the

wider aspects of proteomics experiments. In the present circumstances, it would be

preferable to provide data following a top-down path: project – sample – separation (2-

DE) – isolated entities (spots) – analysis (MS…) – identification (protein) -

annotations. Make2D-DB II is not a LIMS and does not aim to reflect a proteomics

experiment workflow, even if providing data this way is much more natural to deal

with. This top-down path will require a different manner for data input, which should

be nested data (e.g., XML files). In theory, the data model can handle both approaches.

However, some significant work will be needed to implement the appropriate data

converters that will have to intensely check and transform the nested semi-structured

content into the fully structured database relational core.

Integrating the available experimental data in SWISS-2DPAGE

Many databases published with Make2D-DB II do not provide a large set of

annotations, identification evidences and preparation protocols within their contents.

Currently, SWISS-2DPAGE does not provide all of its identification evidences

either. The database was converted into Make2D-DB II using the originally distributed

database flat file, which cannot represent such data. To take full advantage of the

possibilities offered by the new environment, we look forward to integrating all the

available SWISS-2DPAGE preparation and analysis protocols, as well as its many

identification evidences, within the database central implementation. Integrating all

experimental identification results within SWISS-2DPAGE is important for two

reasons. Given the importance of SWISS-2DPAGE as a reference resource in

proteomics, this will encourage many data providers to publish their data in a similar

and richly annotated manner. The second reason is that the ExPASy server might

become more centred on proteomics workflows and experimental analyses, in

particular after the imminent migration of UniProtKB to a self-dedicated server.

Promoting the most up-to-date version of the tool

When users install or update a database, they may be using a version of the tool that

is outdated. It is possible to endorse users on-line with the most-up-to date

functionalities of the tool when they are installing or updating their databases. Hence,

we can think of replacing the distributed package by a live-installer that would extract

the most recent components of the tool. Promoting up-to-date installations would profit

to every end-user of the Make2D-DB II environment.

237

C h a p t e r 				

CHAPTER I. CONCLUSION

As bioinformaticians become familiar with the challenges facing data

management and data integration, they realise there is no plain path that leads
to a unifying solution. However, the diversity of systems, their evolvement and
their cooperation will certainly contribute and converge towards the same
objective: a better understanding of the complexity of the interrelated life

science domains.

CChhaapptteerr II.. CCoonncclluussiioonn

 238

I.I. Discussion

Developing the Make2D-DB II environment was a very interesting task that

constantly needed many considerations both at technical social levels. We were

involved in many of the schemas developed in Appendix III. (A survey on the

development of a proteomics data integration system).

The main constraints we encountered is that we did not start from scratch, since we

had to deal with already existing semi-structured datasets. In our case, the new data

model had been adapted to data and not the other way round. This was a realistic

approach, given the availability of data, as opposed to a theoretical approach, which

would have required data to be formulated in the logic of a theoretical model. To

progress from a data-centric model towards a more generic data model, we have gone

through smooth transitional steps in the model evolvement, making sure that the model

always perfectly fitted with existing data and with all former versions of the tool. We

frequently tolerated data incompleteness at the conceptual level, and we adopted many

former views of data to ensure that end-users would not be disturbed and that former

computer parsers would not suddenly break. We were aware from the beginning that a

top-down approach would have been conceptually easier to handle than the bottom-up

approach. But since we needed quick results, we tried to find a balance between the two

approaches.

In the last few years, Make2D-DB II has established itself as a reference in data

management, in data integration, and in data publication of gel-based proteomics

resources. The environment has been adopted by many academic and private research

groups, and it continues to serve many researchers, providing them with an easy-to-use

and reliable solution. Many 2-DE datasets have become visible to the proteomics

community thanks to the virtual global database set up by Make2D-DB II.

Furthermore, the recent additions of both World-2DPAGE Portal and World-2DPAGE

Repository are expected to significantly contribute to the expansion of the distributed

integrative environment.

Still an ongoing project

However, Make2D-DB II is still an ongoing project. The tool is tied to the relational

data model, which is highly structured and consistent, but implies every piece of data

that it handles to be of atomic nature, such as strings and numbers. On the contrary,

most data sources in biology are not that simple and are deeply nested. We overcame

this problem by adopting an object-relational approach that relies on pointers to data

structures and object materialisation (materialised views) at the inner level of the

implementation. In a relational implementation, it is nevertheless not simple to add new

data sources. Incorporating normalised proteomics data in Make2D-DB II and defining

the structure of materialised objects requires a deep reflexion. On the positive side,

consistency and non-redundancy are guaranteed.

II..IIII.. WWhhaatt ttoo eexxppeecctt nneexxtt??

 239

Promoting open source developments

Make2D-DB II is principally dedicated to academic researchers and has not been

developed to claim fees out of it. The entire code can be made open source, so that

many other contributors can participate in its improvement. The involvement of other

bioinformaticians and biologists in future developments, as opposed currently to a

single developer, will ensure a better longevity and evolution of the system. In order to

facilitate such an implication from other developers, we may consider a change in

license and to set up a dedicated server to centralise and manage ideas and

contributions from researchers from all over the world.

Mass spectrometry search engine

Make2D-DB II, although not formally being a mass spectrometry repository, has the

ability to store mass spectrometry data. In particular, it extracts peak list values from a

large range of common MS formats. Depending on the amount of MS annotations that

users may provide to the tool, the distributed nodes could comprise valuable data,

which represent a potential interest in spectra comparison. Therefore, we may think of

implementing a matching algorithm for mass spectra within the tool. The algorithm

would be triggered in order to identify the closest spectra to one or a set of provided

peak list values. The main advantage would be that, in a large distributed environment,

the charge of performing matching algorithms would also be distributed amid the

different computers, thus reducing the need for powerful resources to deal with large

quantities of locally stored data. This latent functionality would not substitute

specialised MS spectra repositories. It would mostly be a supplementary means of

directly linking analysed spots (or proteins) to spots on remote 2-DE resources, based

on mass spectra similarity. This may help to identify, for example, non-identified

proteins, or to reveal related PTM forms over a gel. To efficiently apply such an

algorithm over a distributed environment would require querying all the remote

databases in parallel.

I.II. What to expect next?

Data integration systems are undoubtedly crucial to the success of molecular biology

research. They are the foundation blocks for the success of our aspiration to understand

the many interconnected life science domains. While serving similar objectives,

integration approaches are heterogeneous. The systems differ in their architectures,

their purposes, and their functionalities, providing thus disparate means for data access

and analysis from different perspectives.

Data integration systems will need to collaborate with each other in order to cope

with the increasingly large and complex biological data. To make this possible, there is

a growing need for a federated approach to share data. This approach mainly resides in

sharing similar definitions of concepts and their representations. Unfortunately,

common definitions and semantics amid the different research communities are hard to

define. However, for a few years we have been observing many joined efforts to bring

together different communities, with the intention to define the appropriate semantics.

Such efforts will gradually enhance interoperability between the various data

CChhaapptteerr II.. CCoonncclluussiioonn

 240

integration systems and they will be reflected by a better collaboration between the

various systems.

With the promotion of data exchange standards, we may anticipate that in the near

future, many data integration systems will tend to adopt a mediator and a federated

approach rather than a warehouse approach. This should be supported by technical

progress in network response, and by efficient algorithms to compress semi-

structured/text data (not necessarily native XML, but most likely RDF, which explicitly

describes data semantics). In the meantime, the warehouse approach will still play a

dominant role in systems that need to collect data to generate and store data mining and

analysis results.

For the time being, Make2D-DB II has been recently involved with PROTICdb and

the Proteome Database System in a prospective collaboration effort aiming to pool

resources in gel-based proteomics data management and integration.

241

 BIBLIOGRAPHY

Reference List

Achard,F., Vaysseix,G., and Barillot,E. 2001. XML, bioinformatics and data integration. Bioinformatics 17:115-125.

Aebersold,R. and Mann,M. 2003. Mass spectrometry-based proteomics. Nature 422:198-207.

Appel,R.D., Bairoch,A., Sanchez,J.C., Vargas,J.R., Golaz,O., Pasquali,C., and Hochstrasser,D.F. 1996. Federated two-

dimensional electrophoresis database: a simple means of publishing two-dimensional electrophoresis data.

Electrophoresis 17:540-546.

Appel,R.D., Sanchez,J.C., Bairoch,A., Golaz,O., Miu,M., Vargas,J.R., and Hochstrasser,D.F. 1993. SWISS-2DPAGE: a

database of two-dimensional gel electrophoresis images. Electrophoresis 14:1232-1238.

Apweiler,R., Bairoch,A., and Wu,C.H. 2004. Protein sequence databases. Curr. Opin. Chem Biol 8:76-80.

Babnigg,G. and Giometti,C.S. 2004. GELBANK: a database of annotated two-dimensional gel electrophoresis patterns

of biological systems with completed genomes. Nucleic Acids Res. 32:D582-D585.

Babnigg,G. and Giometti,C.S. 2006. A database of unique protein sequence identifiers for proteome studies.

Proteomics. 6:4514-4522.

Babnigg,G. and Giometti,C.S. 2003. ProteomeWeb: a web-based interface for the display and interrogation of

proteomes. Proteomics. 3:584-600.

Bader,G.D., Betel,D., and Hogue,C.W. 2003. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res.

31:248-250.

Bairoch,A. 2000. The ENZYME database in 2000. Nucleic Acids Res. 28:304-305.

Bairoch,A. 1997. Proteome Databases. In Proteome Research: New Frontiers in Functional Genomics. (eds. MR

Wilkins, KL Williams, RD Appel, and DF Hochstrasser), pp 93-132. Springer: Berlin, Germany.

Bairoch,A., Apweiler,R., Wu,C.H., Barker,W.C., Boeckmann,B., Ferro,S., Gasteiger,E., Huang,H., Lopez,R.,

Magrane,M., Martin,M.J., Natale,D.A., O'Donovan,C., Redaschi,N., and Yeh,L.S. 2005. The Universal Protein Resource

(UniProt). Nucleic Acids Res. 33:D154-D159.

BBiibblliiooggrraapphhyy

 242

Bairoch,A., Boeckmann,B., Ferro,S., and Gasteiger,E. 2004. Swiss-Prot: juggling between evolution and stability. Brief.

Bioinform. 5:39-55.

Baker,P.G., Goble,C.A., Bechhofer,S., Paton,N.W., Stevens,R., and Brass,A. 1999. An ontology for bioinformatics

applications. Bioinformatics 15:510-520.

Ball,C.A., Awad,I.A., Demeter,J., Gollub,J., Hebert,J.M., Hernandez-Boussard,T., Jin,H., Matese,J.C., Nitzberg,M.,

Wymore,F., Zachariah,Z.K., Brown,P.O., and Sherlock,G. 2005. The Stanford Microarray Database accommodates

additional microarray platforms and data formats. Nucleic Acids Res. 33:D580-D582.

Ball,C.A. and Brazma,A. 2006. MGED standards: work in progress. OMICS. 10:138-144.

Ball,C.A., Sherlock,G., Parkinson,H., Rocca-Sera,P., Brooksbank,C., Causton,H.C., Cavalieri,D., Gaasterland,T.,

Hingamp,P., Holstege,F., Ringwald,M., Spellman,P., Stoeckert,C.J., Jr., Stewart,J.E., Taylor,R., Brazma,A., and

Quackenbush,J. 2002. Standards for microarray data. Science 298:539.

Benson,D.A., Karsch-Mizrachi,I., Lipman,D.J., Ostell,J., and Wheeler,D.L. 2006. GenBank. Nucleic Acids Res. 34:D16-

D20.

Berman,H., Henrick,K., Nakamura,H., and Markley,J.L. 2007. The worldwide Protein Data Bank (wwPDB): ensuring a

single, uniform archive of PDB data. Nucleic Acids Res. 35:D301-D303.

Binz,P.A., Muller,M., Walther,D., Bienvenut,W.V., Gras,R., Hoogland,C., Bouchet,G., Gasteiger,E., Fabbretti,R., Gay,S.,

Palagi,P., Wilkins,M.R., Rouge,V., Tonella,L., Paesano,S., Rossellat,G., Karmime,A., Bairoch,A., Sanchez,J.C.,

Appel,R.D., and Hochstrasser,D.F. 1999. A molecular scanner to automate proteomic research and to display proteome

images. Anal. Chem 71:4981-4988.

Birkland,A. and Yona,G. 2006a. BIOZON: a hub of heterogeneous biological data. Nucleic Acids Res. 34:D235-D242.

Birkland,A. and Yona,G. 2006b. BIOZON: a system for unification, management and analysis of heterogeneous

biological data. BMC. Bioinformatics 7:70.

Birney,E. and Clamp,M. 2004. Biological database design and implementation. Brief. Bioinform. 5:31-38.

Blueggel,M., Chamrad,D., and Meyer,H.E. 2004. Bioinformatics in proteomics. Curr. Pharm. Biotechnol. 5:79-88.

Boeckmann,B., Blatter,M.C., Famiglietti,L., Hinz,U., Lane,L., Roechert,B., and Bairoch,A. 2005. Protein variety and

functional diversity: Swiss-Prot annotation in its biological context. C. R. Biol 328:882-899.

Bradshaw,R.A., Burlingame,A.L., Carr,S., and Aebersold,R. 2006. Reporting protein identification data: the next

generation of guidelines. Mol. Cell Proteomics. 5:787-788.

Brooksbank,C. and Quackenbush,J. 2006. Data standards: a call to action. OMICS. 10:94-99.

BBiibblliiooggrraapphhyy

 243

Buehler,L.K. and Rashidi,H.H. 2005. Bioinformatics Basics: Applications in Biological Science and Medicine, 2nd ed.

CRC Press, Taylor & Francis Group: Boca Raton, USA.

Buneman,P., Khanna,S., and Tan,W.C. 2000. Data Provenance: Some Basic Issues. Lecture Notes in Computer

Science 1974:87-93.

Camon,E., Magrane,M., Barrell,D., Lee,V., Dimmer,E., Maslen,J., Binns,D., Harte,N., Lopez,R., and Apweiler,R. 2004.

The Gene Ontology Annotation (GOA) Database: sharing knowledge in Uniprot with Gene Ontology. Nucleic Acids Res.

32:D262-D266.

Chatr-aryamontri,A., Ceol,A., Palazzi,L.M., Nardelli,G., Schneider,M.V., Castagnoli,L., and Cesareni,G. 2007. MINT: the

Molecular INTeraction database. Nucleic Acids Res. 35:D572-D574.

Chen,I.-M.A. and Markowitz,V.M. 1995. An overview of the object protocol model (OPM) and the OPM data

management tools. Information Systems 20:393-418.

Chen,P. 1976. The Entity-Relationship Model--Toward a Unified View of Data. ACM TODS 1:9-36.

Cheng,D. and Boudjlida,N. An Architecture for Heterogeneous Federated Mediators. 2nd INTEROP-EMOI Open

Workshop on Enterprise Models and Ontologies for Interoperability - INTEROP-EMOI'05. In Proceedings of the

EMOI'05 (Enterprise Modelling and Ontologies for Interoperability), in connection with the 17th Conference on Advanced

Information Systems Engineering , 263-271. 2005. CAiSE'2005.

Ref Type: Conference Proceeding

Cheung,K.H., Yip,K.Y., Smith,A., Deknikker,R., Masiar,A., and Gerstein,M. 2005. YeastHub: a semantic web use case

for integrating data in the life sciences domain. Bioinformatics. 21 Suppl 1:i85-i96.

Chung,S.Y. and Wong,L. 1999. Kleisli: a new tool for data integration in biology. Trends Biotechnol. 17:351-355.

Chung,S.Y. and Wooley,J.C. 2003. Challenges Faced in the Integration pf Biological Information. In Bioinformatics:

Managing scientific data pp 11-34. Morgan Kaufman: San Francisco, USA.

Cochrane,G., Aldebert,P., Althorpe,N., Andersson,M., Baker,W., Baldwin,A., Bates,K., Bhattacharyya,S., Browne,P.,

van den,B.A., Castro,M., Duggan,K., Eberhardt,R., Faruque,N., Gamble,J., Kanz,C., Kulikova,T., Lee,C., Leinonen,R.,

Lin,Q., Lombard,V., Lopez,R., McHale,M., McWilliam,H., Mukherjee,G., Nardone,F., Pastor,M.P., Sobhany,S.,

Stoehr,P., Tzouvara,K., Vaughan,R., Wu,D., Zhu,W., and Apweiler,R. 2006. EMBL Nucleotide Sequence Database:

developments in 2005. Nucleic Acids Res. 34:D10-D15.

Codd,E.F. 1970. A Relational Model of Data for Large Shared Data Banks. Communications of the ACM 13:377-387.

Craig,R., Cortens,J.P., and Beavis,R.C. 2004. Open source system for analyzing, validating, and storing protein

identification data. J. Proteome. Res. 3:1234-1242.

Davidson,S.B. and et al. 2006. K2/Kleisli and GUS: Experiments in integrated access to genomic data sources. IBM

Systems Journal 40.

BBiibblliiooggrraapphhyy

 244

Daviss,B. 2005. Growing pains for metabolomics. The Scientist 19:25-28.

Dayhoff,M.O., Eck,R.V., Chang,M.A., and Sochard,M.R. 1965. Atlas of Protein Sequence and Structure. National

Biomedical Foundation Research Foundation: Silver Spring, MD.

Desiere,F., Deutsch,E.W., King,N.L., Nesvizhskii,A.I., Mallick,P., Eng,J., Chen,S., Eddes,J., Loevenich,S.N., and

Aebersold,R. 2006. The PeptideAtlas project. Nucleic Acids Res. 34:D655-D658.

Desiere,F., Deutsch,E.W., Nesvizhskii,A.I., Mallick,P., King,N.L., Eng,J.K., Aderem,A., Boyle,R., Brunner,E.,

Donohoe,S., Fausto,N., Hafen,E., Hood,L., Katze,M.G., Kennedy,K.A., Kregenow,F., Lee,H., Lin,B., Martin,D.,

Ranish,J.A., Rawlings,D.J., Samelson,L.E., Shiio,Y., Watts,J.D., Wollscheid,B., Wright,M.E., Yan,W., Yang,L., Yi,E.C.,

Zhang,H., and Aebersold,R. 2005. Integration with the human genome of peptide sequences obtained by high-

throughput mass spectrometry. Genome Biol. 6:R9.

Dowell,R.D., Jokerst,R.M., Day,A., Eddy,S.R., and Stein,L. 2001. The distributed annotation system. BMC.

Bioinformatics. 2:7.

Dowsey,A.W., Dunn,M.J., and Yang,G.Z. 2003. The role of bioinformatics in two-dimensional gel electrophoresis.

Proteomics. 3:1567-1596.

Dowsey,A.W., Dunn,M.J., and Yang,G.Z. 2004. ProteomeGRID: towards a high-throughput proteomics pipeline through

opportunistic cluster image computing for two-dimensional gel electrophoresis. Proteomics. 4:3800-3812.

Dowsey,A.W., English,J., Pennington,K., Cotter,D., Stuehler,K., Marcus,K., Meyer,H.E., Dunn,M.J., and Yang,G.Z.

2006. Examination of 2-DE in the Human Proteome Organisation Brain Proteome Project pilot studies with the new

RAIN gel matching technique. Proteomics. 6:5030-5047.

Drews,O. and Gorg,A. 2005. DynaProt 2D: an advanced proteomic database for dynamic online access to proteomes

and two-dimensional electrophoresis gels. Nucleic Acids Res. 33:D583-D587.

Durinck,S., Moreau,Y., Kasprzyk,A., Davis,S., De,M.B., Brazma,A., and Huber,W. 2005. BioMart and Bioconductor: a

powerful link between biological databases and microarray data analysis. Bioinformatics. 21:3439-3440.

Eckman,B.A. 2003. A Practitioner's Guide to Data Management and Data Integration in Bioinformatics. In

Bioinformatics: Managing scientific data pp 35-73. Morgan Kaufman: San Francisco, USA.

Englbrecht,C.C. and Facius,A. 2005. Bioinformatics challenges in proteomics. Comb. Chem. High Throughput. Screen.

8:705-715.

Eppig,J.T., Bult,C.J., Kadin,J.A., Richardson,J.E., Blake,J.A., Anagnostopoulos,A., Baldarelli,R.M., Baya,M., Beal,J.S.,

Bello,S.M., Boddy,W.J., Bradt,D.W., Burkart,D.L., Butler,N.E., Campbell,J., Cassell,M.A., Corbani,L.E., Cousins,S.L.,

Dahmen,D.J., Dene,H., Diehl,A.D., Drabkin,H.J., Frazer,K.S., Frost,P., Glass,L.H., Goldsmith,C.W., Grant,P.L., Lennon-

Pierce,M., Lewis,J., Lu,I., Maltais,L.J., ndrews-Hill,M., McClellan,L., Miers,D.B., Miller,L.A., Ni,L., Ormsby,J.E., Qi,D.,

Reddy,T.B., Reed,D.J., Richards-Smith,B., Shaw,D.R., Sinclair,R., Smith,C.L., Szauter,P., Walker,M.B., Walton,D.O.,

BBiibblliiooggrraapphhyy

 245

Washburn,L.L., Witham,I.T., and Zhu,Y. 2005. The Mouse Genome Database (MGD): from genes to mice--a community

resource for mouse biology. Nucleic Acids Res. 33:D471-D475.

Etzold,T. and Argos,P. 1993. SRS--an indexing and retrieval tool for flat file data libraries. Comput. Appl. Biosci. 9:49-57.

Etzold,T., Howard,H., and Beaulah,S. 2003. SRS: An Integration Platform for Databanks and Analysis Tools in

Bioinformaitcs. In Bioinformatics: Managing scientific data pp 109-145. Morgan Kaufman: San Francisco, USA.

Ferry-Dumazet,H., Houel,G., Montalent,P., Moreau,L., Langella,O., Negroni,L., Vincent,D., Lalanne,C., de,D.A.,

Plomion,C., Zivy,M., and Joets,J. 2005. PROTICdb: a web-based application to store, track, query, and compare plant

proteome data. Proteomics. 5:2069-2081.

Galperin,M.Y. 2007. The Molecular Biology Database Collection: 2007 update. Nucleic Acids Res. 35:D3-D4.

Garcia,C.A., Chen,Y.P., and Ragan,M.A. 2005. Information integration in molecular bioscience. Appl. Bioinformatics.

4:157-173.

Garvey,T.D., Lincoln,P., Pedersen,C.J., Martin,D., and Johnson,M. 2003. BioSPICE: access to the most current

computational tools for biologists. OMICS. 7:411-420.

Gasteiger,E., Gattiker,A., Hoogland,C., Ivanyi,I., Appel,R.D., and Bairoch,A. 2003. ExPASy: The proteomics server for

in-depth protein knowledge and analysis. Nucleic Acids Res. 31:3784-3788.

Geer,R.C. and Sayers,E.W. 2003. Entrez: making use of its power. Brief. Bioinform. 4:179-184.

Gianazza,E., Dossi,G., Celentano,F., and Righetti,P.G. 1983. Isoelectric focusing in immobilized pH gradients:

generation and optimization of wide pH intervals with two-chamber mixers. J. Biochem. Biophys. Methods 8:109-133.

Goesmann,A., Linke,B., Bartels,D., Dondrup,M., Krause,L., Neuweger,H., Oehm,S., Paczian,T., Wilke,A., and Meyer,F.

2005. BRIGEP--the BRIDGE-based genome-transcriptome-proteome browser. Nucleic Acids Res. 33:W710-W716.

Goesmann,A., Linke,B., Rupp,O., Krause,L., Bartels,D., Dondrup,M., McHardy,A.C., Wilke,A., Puhler,A., and Meyer,F.

2003. Building a BRIDGE for the integration of heterogeneous data from functional genomics into a platform for systems

biology. J. Biotechnol. 106:157-167.

Gorg,A., Obermaier,C., Boguth,G., Harder,A., Scheibe,B., Wildgruber,R., and Weiss,W. 2000. The current state of two-

dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037-1053.

Gorg,A., Weiss,W., and Dunn,M.J. 2004. Current two-dimensional electrophoresis technology for proteomics.

Proteomics. 4:3665-3685.

Govorun,V.M. and Archakov,A.I. 2002. Proteomic technologies in modern biomedical science. Biochemistry (Mosc.)

67:1109-1123.

BBiibblliiooggrraapphhyy

 246

Gruber,T. 1994. Toward Principles for the Design of Ontologieres Used for Knowledge Sharing. International Journal on

Human Computer Systems 43:907-928.

Guerrera,I.C. and Kleiner,O. 2005. Application of mass spectrometry in proteomics. Biosci. Rep. 25:71-93.

Gupta,P. and Lin,E.T. Datajoiner: A Prarcitcal Approach to Multi-Database Access. In Proceedings of the International

IEEE Conference on Parallel and Distributed Information Systems , 264. 1994. Los Alamitos, CA, IEEE Computer

Society.

Ref Type: Conference Proceeding

Gygi,S.P., Rist,B., Gerber,S.A., Turecek,F., Gelb,M.H., and Aebersold,R. 1999. Quantitative analysis of complex protein

mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17:994-999.

Haas,L.M. and et al. 2001. DiscoveryLink: A system for integrated access to life sciences data sources. IBM Systems

Journal 40.

Haas,L.M., Kossmann,D., Wimmers,E.L., and et al. Optimizing Queries Across Diverse Data Sources. In proceddings of

the Conference on Very Large Databases (VLDB) , 276-285. 1997. San Francisco, Morgan Kaufmann.

Ref Type: Conference Proceeding

Halevy,A.Y. 2001. Answering queries using views: A survey. Very Large Database J. 10:270-294.

Hanash,S. and Celis,J.E. 2002. The Human Proteome Organization: a mission to advance proteome knowledge. Mol.

Cell Proteomics. 1:413-414.

Hancock,W.S., Wu,S.L., Stanley,R.R., and Gombocz,E.A. 2002. Publishing large proteome datasets: scientific policy

meets emerging technologies. Trends Biotechnol. 20:S39-S44.

Herbert,B.R., Sanchez,J.C., and Bini,L. 1997. Two-Dimensional Electrophoresis: The State of the Art and Future

Directions. In Proteome Research: New Frontiers in Functional Genomics. (eds. MR Wilkins, KL Williams, RD Appel,

and DF Hochstrasser), pp 13-33. Springer: Berlin, Germany.

Hermjakob,H. 2006. The HUPO Proteomics Standards Initiative - Overcoming the Fragmentation of Proteomics Data.

Proteomics. 6 Suppl 2:34-38.

Hermjakob,H., Montecchi-Palazzi,L., Bader,G., Wojcik,J., Salwinski,L., Ceol,A., Moore,S., Orchard,S., Sarkans,U.,

von,M.C., Roechert,B., Poux,S., Jung,E., Mersch,H., Kersey,P., Lappe,M., Li,Y., Zeng,R., Rana,D., Nikolski,M., Husi,H.,

Brun,C., Shanker,K., Grant,S.G., Sander,C., Bork,P., Zhu,W., Pandey,A., Brazma,A., Jacq,B., Vidal,M., Sherman,D.,

Legrain,P., Cesareni,G., Xenarios,I., Eisenberg,D., Steipe,B., Hogue,C., and Apweiler,R. 2004. The HUPO PSI's

molecular interaction format--a community standard for the representation of protein interaction data. Nat. Biotechnol.

22:177-183.

Hernandez,P., Muller,M., and Appel,R.D. 2006. Automated protein identification by tandem mass spectrometry: issues

and strategies. Mass Spectrom. Rev. 25:235-254.

BBiibblliiooggrraapphhyy

 247

Hernandez,T. and Kambhampati,S. 2004. Integration of biological sources: current systems and challenges ahead.

ACM SIGMOD Record 33:51-60.

Hill,A. and Kim,H. 2003. The UAB Proteomics Database. Bioinformatics. 19:2149-2151.

Hoogland,C., Baujard,V., Sanchez,J.C., Hochstrasser,D.F., and Appel,R.D. 1997. Make2ddb: a simple package to set

up a two-dimensional electrophoresis database for the World Wide Web. Electrophoresis 18:2755-2758.

Hoogland,C., Mostaguir,K., Appel,R.D., and Lisacek,F. 2008. The World-2DPAGE Constellation to promote and publish

gel-based proteomics data through the ExPASy server. Journal of Proteomics in Press.

Hoogland,C., Mostaguir,K., Sanchez,J.C., Hochstrasser,D.F., and Appel,R.D. 2004. SWISS-2DPAGE, ten years later.

Proteomics. 4:2352-2356.

Hoogland,C., Sanchez,J.C., Tonella,L., Bairoch,A., Hochstrasser,D.F., and Appel,R.D. 1999. The SWISS-2DPAGE

database: what has changed during the last year. Nucleic Acids Res. 27:289-291.

Hubbard,T.J., Aken,B.L., Beal,K., Ballester,B., Caccamo,M., Chen,Y., Clarke,L., Coates,G., Cunningham,F., Cutts,T.,

Down,T., Dyer,S.C., Fitzgerald,S., Fernandez-Banet,J., Graf,S., Haider,S., Hammond,M., Herrero,J., Holland,R.,

Howe,K., Howe,K., Johnson,N., Kahari,A., Keefe,D., Kokocinski,F., Kulesha,E., Lawson,D., Longden,I., Melsopp,C.,

Megy,K., Meidl,P., Ouverdin,B., Parker,A., Prlic,A., Rice,S., Rios,D., Schuster,M., Sealy,I., Severin,J., Slater,G.,

Smedley,D., Spudich,G., Trevanion,S., Vilella,A., Vogel,J., White,S., Wood,M., Cox,T., Curwen,V., Durbin,R.,

Fernandez-Suarez,X.M., Flicek,P., Kasprzyk,A., Proctor,G., Searle,S., Smith,J., Ureta-Vidal,A., and Birney,E. 2007.

Ensembl 2007. Nucleic Acids Res. 35:D610-D617.

Hull,R. Managing semantic heterogeneity in databases: A theoretical perspective. Symposium on Principles of

Database Systems. Proc.of the 16th ACM SIGACT SIGMOD SIGART Symp.on Principles of Database Systems , 51-

61. 1997. New York, USA, ACM Press.

Ref Type: Conference Proceeding

Jones,A. and Gibson,F. 2007. An Update on Data Standards for Gel Electrophoresis. Practical Proteomics 7:35-40.

Jones,A.R., Pizarro,A., Spellman,P., and Miller,M. 2006a. FuGE: Functional Genomics Experiment Object Model.

OMICS. 10:179-184.

Jones,P., Cote,R.G., Martens,L., Quinn,A.F., Taylor,C.F., Derache,W., Hermjakob,H., and Apweiler,R. 2006b. PRIDE: a

public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res. 34:D659-D663.

Kanehisa,M., Goto,S., Hattori,M., oki-Kinoshita,K.F., Itoh,M., Kawashima,S., Katayama,T., Araki,M., and Hirakawa,M.

2006. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 34:D354-D357.

Karas,M. and Hillenkamp,F. 1988. Laser desorption ionization of proteins with molecular masses exceeding 10,000

daltons. Anal. Chem 60:2299-2301.

BBiibblliiooggrraapphhyy

 248

Kelso,J., Visagie,J., Theiler,G., Christoffels,A., Bardien,S., Smedley,D., Otgaar,D., Greyling,G., Jongeneel,C.V.,

McCarthy,M.I., Hide,T., and Hide,W. 2003. eVOC: a controlled vocabulary for unifying gene expression data. Genome

Res. 13:1222-1230.

Kennedy,J., Hyam,R., Kukla,R., and Paterson,T. 2006. Standard data model representation for taxonomic information.

OMICS. 10:220-230.

Kerrien,S., am-Faruque,Y., Aranda,B., Bancarz,I., Bridge,A., Derow,C., Dimmer,E., Feuermann,M., Friedrichsen,A.,

Huntley,R., Kohler,C., Khadake,J., Leroy,C., Liban,A., Lieftink,C., Montecchi-Palazzi,L., Orchard,S., Risse,J., Robbe,K.,

Roechert,B., Thorneycroft,D., Zhang,Y., Apweiler,R., and Hermjakob,H. 2007. IntAct--open source resource for

molecular interaction data. Nucleic Acids Res. 35:D561-D565.

Kersey,P., Bower,L., Morris,L., Horne,A., Petryszak,R., Kanz,C., Kanapin,A., Das,U., Michoud,K., Phan,I., Gattiker,A.,

Kulikova,T., Faruque,N., Duggan,K., Mclaren,P., Reimholz,B., Duret,L., Penel,S., Reuter,I., and Apweiler,R. 2005.

Integr8 and Genome Reviews: integrated views of complete genomes and proteomes. Nucleic Acids Res. 33:D297-

D302.

Kulikova,T., Akhtar,R., Aldebert,P., Althorpe,N., Andersson,M., Baldwin,A., Bates,K., Bhattacharyya,S., Bower,L.,

Browne,P., Castro,M., Cochrane,G., Duggan,K., Eberhardt,R., Faruque,N., Hoad,G., Kanz,C., Lee,C., Leinonen,R.,

Lin,Q., Lombard,V., Lopez,R., Lorenc,D., McWilliam,H., Mukherjee,G., Nardone,F., Pastor,M.P., Plaister,S.,

Sobhany,S., Stoehr,P., Vaughan,R., Wu,D., Zhu,W., and Apweiler,R. 2007. EMBL Nucleotide Sequence Database in

2006. Nucleic Acids Res. 35:D16-D20.

Lacroix,Z. 2002. Biological data integration: wrapping data and tools. IEEE Trans. Inf. Technol. Biomed. 6:123-128.

Lacroix,Z. and Critchlow,T. 2003b. Compared Evaluation of Scientific Data Management Systems. In Bioinformatics:

Managing scientific data pp 371-391. Morgan Kaufman: San Francisco, USA.

Lacroix,Z. and Critchlow,T. 2003a. Bioinformatics: Managing scientific data. Morgan Kaufman: San Francisco, USA.

Lam,H.Y., Marenco,L., Clark,T., Gao,Y., Kinoshita,J., Shepherd,G., Miller,P., Wu,E., Wong,G.T., Liu,N., Crasto,C.,

Morse,T., Stephens,S., and Cheung,K.H. 2007. AlzPharm: integration of neurodegeneration data using RDF. BMC.

Bioinformatics. 8 Suppl 3:S4.

Lambert,J.P., Ethier,M., Smith,J.C., and Figeys,D. 2005. Proteomics: from gel based to gel free. Anal. Chem. 77:3771-

3787.

Lee,V., Camon,E., Dimmer,E., Barrell,D., and Apweiler,R. 2005. Who tangos with GOA?-Use of Gene Ontology

Annotation (GOA) for biological interpretation of '-omics' data and for validation of automatic annotation tools. In Silico.

Biol. 5:5-8.

Lemkin,P.F. 1997. The 2DWG meta-database of two-dimensional electrophoretic gel images on the Internet.

Electrophoresis 18:2759-2773.

BBiibblliiooggrraapphhyy

 249

Lemkin,P.F. and Thornwall,G. 1999. Flicker image comparison of 2-D gel images for putative protein identification using

the 2DWG meta-database. Mol. Biotechnol. 12:159-172.

Lenzerini,M. 2001. Data integration: A theoretical perspective. In Proceedings of the twenty-first ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems pp 233-246. ACM Press: New York, USA.

Lenzerini,M., Batini,C., Giunchiglia,F., Giorgini,P., and Mecella,M. Data integration is harder than you thought

(Illustration). CoopIS 2001 : cooperative information systems (Trento, 5-7 September 2001). Cooperative information

systems.International conference No9, Trento , ITALIE . 2001. Berlin, Germany, Springer. 5-9-2001.

Ref Type: Conference Proceeding

Levander,F., Krogh,M., Warell,K., Garden,P., James,P., and Hakkinen,J. 2007. Automated reporting from gel-based

proteomics experiments using the open source Proteios database application. Proteomics. 7:668-674.

Li,F., Li,M., Xiao,Z., Zhang,P., Li,J., and Chen,Z. 2006. Construction of a nasopharyngeal carcinoma 2D/MS repository

with Open Source XML database--Xindice. BMC. Bioinformatics 7:13.

Li,L., Wada,M., and Yokota,A. 2007. Cytoplasmic proteome reference map for a glutamic acid-producing

Corynebacterium glutamicum ATCC 14067. Proteomics 7:4317-4322.

Lin,S.M., Zhu,L., Winter,A.Q., Sasinowski,M., and Kibbe,W.A. 2005. What is mzXML good for? Expert. Rev. Proteomics.

2:839-845.

Lindon,J.C., Nicholson,J.K., Holmes,E., Keun,H.C., Craig,A., Pearce,J.T., Bruce,S.J., Hardy,N., Sansone,S.A., Antti,H.,

Jonsson,P., Daykin,C., Navarange,M., Beger,R.D., Verheij,E.R., Amberg,A., Baunsgaard,D., Cantor,G.H., Lehman-

McKeeman,L., Earll,M., Wold,S., Johansson,E., Haselden,J.N., Kramer,K., Thomas,C., Lindberg,J., Schuppe-

Koistinen,I., Wilson,I.D., Reily,M.D., Robertson,D.G., Senn,H., Krotzky,A., Kochhar,S., Powell,J., van der,O.F.,

Plumb,R., Schaefer,H., and Spraul,M. 2005. Summary recommendations for standardization and reporting of metabolic

analyses. Nat. Biotechnol. 23:833-838.

Lisacek,F. 2006. Web-based MS/MS Data Analysis. Proteomics. 6 Suppl 2:22-32.

Lisacek,F. and Appel,R.D. 2007. Systems Biology. Proteomics. 7:825-827.

Lisacek,F., Cohen-Boulakia,S., and Appel,R.D. 2006a. Proteome informatics II: bioinformatics for comparative

proteomics. Proteomics. 6:5445-5466.

Lisacek,F., Hoogland,C., and Bougueleret,L. 2006b. Data Integration. In Proteome Research: Concepts, Technology

and Application. (eds. KL Williams, RD Appel, KL Williams, and DF Hochstrasser), Springer Verlag (In press): Berlin

Heidelberg.

Lopez,A.J. 1998. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu.

Rev. Genet. 32:279-305.

BBiibblliiooggrraapphhyy

 250

MacBeath,G. and Schreiber,S.L. 2000. Printing proteins as microarrays for high-throughput function determination.

Science 289:1760-1763.

Maglott,D., Ostell,J., Pruitt,K.D., and Tatusova,T. 2005. Entrez Gene: gene-centered information at NCBI. Nucleic Acids

Res. 33:D54-D58.

Mann,M. and Wilm,M. 1995. Electrospray mass spectrometry for protein characterization. Trends Biochem. Sci. 20:219-

224.

Medjahed,D., Smythers,G.W., Powell,D.A., Stephens,R.M., Lemkin,P.F., and Munroe,D.J. 2003. VIRTUAL2D: A web-

accessible predictive database for proteomics analysis. Proteomics. 3:129-138.

Morisawa,H., Hirota,M., and Toda,T. 2006. Development of an open source laboratory information management system

for 2-D gel electrophoresis-based proteomics workflow. BMC. Bioinformatics. 7:430.

Mork,P., Halevy,A., and Tarczy-Hornoch,P. 2001. A model for data integration systems of biomedical data applied to

online genetic databases. Proc. AMIA. Symp.473-477.

Mostaguir,K., Hoogland,C., Binz,P.A., and Appel,R.D. 2003. The Make 2D-DB II package: conversion of federated two-

dimensional gel electrophoresis databases into a relational format and interconnection of distributed databases.

Proteomics. 3:1441-1444.

Mukherjea,S. 2005. Information retrieval and knowledge discovery utilising a biomedical Semantic Web. Brief.

Bioinform. 6:252-262.

Mulder,N.J., Apweiler,R., Attwood,T.K., Bairoch,A., Bateman,A., Binns,D., Bork,P., Buillard,V., Cerutti,L., Copley,R.,

Courcelle,E., Das,U., Daugherty,L., Dibley,M., Finn,R., Fleischmann,W., Gough,J., Haft,D., Hulo,N., Hunter,S., Kahn,D.,

Kanapin,A., Kejariwal,A., Labarga,A., Langendijk-Genevaux,P.S., Lonsdale,D., Lopez,R., Letunic,I., Madera,M.,

Maslen,J., McAnulla,C., McDowall,J., Mistry,J., Mitchell,A., Nikolskaya,A.N., Orchard,S., Orengo,C., Petryszak,R.,

Selengut,J.D., Sigrist,C.J., Thomas,P.D., Valentin,F., Wilson,D., Wu,C.H., and Yeats,C. 2007. New developments in the

InterPro database. Nucleic Acids Res. 35:D224-D228.

Nilsson,C.L. and Davidsson,P. 2000. New separation tools for comprehensive studies of protein expression by mass

spectrometry. Mass Spectrom. Rev. 19:390-397.

O'Farrel,P.H. 1975. High Resolution Two-dimensional electrophoresis of proteins. J Biol Chem 250:4007-4021.

Okubo,K., Sugawara,H., Gojobori,T., and Tateno,Y. 2006. DDBJ in preparation for overview of research activities

behind data submissions. Nucleic Acids Res. 34:D6-D9.

Orchard,S., Hermjakob,H., and Apweiler,R. 2003. The proteomics standards initiative. Proteomics. 3:1374-1376.

Palagi,P.M., Walther,D., Quadroni,M., Catherinet,S., Burgess,J., Zimmermann-Ivol,C.G., Sanchez,J.C., Binz,P.A.,

Hochstrasser,D.F., and Appel,R.D. 2005. MSight: an image analysis software for liquid chromatography-mass

spectrometry. Proteomics. 5:2381-2384.

BBiibblliiooggrraapphhyy

 251

Paton,N.W., Goble,C.A., and Bechhofer,S. 2000. Knowledge based information integration systems. Information and

Software Technology 42:299-312.

Payne,W.E. and Garrels,J.I. 1997. Yeast Protein database (YPD): a database for the complete proteome of

Saccharomyces cerevisiae. Nucleic Acids Res. 25:57-62.

Pedrioli,P.G., Eng,J.K., Hubley,R., Vogelzang,M., Deutsch,E.W., Raught,B., Pratt,B., Nilsson,E., Angeletti,R.H.,

Apweiler,R., Cheung,K., Costello,C.E., Hermjakob,H., Huang,S., Julian,R.K., Kapp,E., McComb,M.E., Oliver,S.G.,

Omenn,G., Paton,N.W., Simpson,R., Smith,R., Taylor,C.F., Zhu,W., and Aebersold,R. 2004. A common open

representation of mass spectrometry data and its application to proteomics research. Nat. Biotechnol. 22:1459-1466.

Perco,P., Rapberger,R., Siehs,C., Lukas,A., Oberbauer,R., Mayer,G., and Mayer,B. 2006. Transforming omics data into

context: bioinformatics on genomics and proteomics raw data. Electrophoresis 27:2659-2675.

Perrot,M., Guieysse-Peugeot,A.L., Massoni,A., Espagne,C., Claverol,S., Silva,R.M., Jeno,P., Santos,M., Bonneu,M.,

and Boucherie,H. 2007. Yeast proteome map (update 2006). Proteomics. 7:1117-1120.

Pleissner,K.P., Schmelzer,P., Wehrl,W., and Jungblut,P.R. 2004. Presentation of differentially regulated proteins within

a web-accessible proteome database system of microorganisms. Proteomics. 4:2987-2990.

Plikat,U., Voshol,H., Dangendorf,Y., Wiedmann,B., Devay,P., Muller,D., Wirth,U., Szustakowski,J., Chirn,G.W.,

Inverardi,B., Puyang,X., Brown,K., Kamp,H., Hoving,S., Ruchti,A., Brendlen,N., Peterson,R., Buco,J., Oostrum,J., and

Peitsch,M.C. 2007. From proteomics to systems biology of bacterial pathogens: approaches, tools, and applications.

Proteomics 7:992-1003.

Prince,J.T., Carlson,M.W., Wang,R., Lu,P., and Marcotte,E.M. 2004. The need for a public proteomics repository. Nat.

Biotechnol. 22:471-472.

Prompramote,S. and Chen,Y. ANNODA: Tool for integrating Molecular-biological Annotation Data. 21st International

Conference on Data Engineering Workshops (ICDEW'05) , 1166. 5-4-2005. Washington, DC, USA, IEEE Computer

Society.

Ref Type: Conference Proceeding

Pruess,M., Kersey,P., and Apweiler,R. 2005. The Integr8 project--a resource for genomic and proteomic data. In Silico.

Biol. 5:179-185.

Ravichandran,V., Lubell,J., Vasquez,G.B., Lemkin,P., Sriram,R.D., and Gilliland,G.L. 2004. Ongoing development of

two-dimensional polyacrylamide gel electrophoresis data standards. Electrophoresis 25:297-308.

Saier,M.H., Jr., Tran,C.V., and Barabote,R.D. 2006. TCDB: the Transporter Classification Database for membrane

transport protein analyses and information. Nucleic Acids Res. 34:D181-D186.

Sanger,F., Air,G.M., Barrell,B.G., Brown,N.L., Coulson,A.R., Fiddes,C.A., Hutchison,C.A., Slocombe,P.M., and Smith,M.

1977. Nucleotide sequence of bacteriophage phi X174 DNA. Nature 265:687-695.

BBiibblliiooggrraapphhyy

 252

Schena,M., Heller,R.A., Theriault,T.P., Konrad,K., Lachenmeier,E., and Davis,R.W. 1998. Microarrays: biotechnology's

discovery platform for functional genomics. Trends Biotechnol. 16:301-306.

Schmuller,J. 2004. Teach Yourself UML. SAMS Publishing.

Schomburg,I., Chang,A., Ebeling,C., Gremse,M., Heldt,C., Huhn,G., and Schomburg,D. 2004. BRENDA, the enzyme

database: updates and major new developments. Nucleic Acids Res. 32:D431-D433.

Shah,S.P., Huang,Y., Xu,T., Yuen,M.M., Ling,J., and Ouellette,B.F. 2005. Atlas - a data warehouse for integrative

bioinformatics. BMC. Bioinformatics. 6:34.

Soldatova,L.N. and King,R.D. 2005. Are the current ontologies in biology good ontologies? Nat. Biotechnol. 23:1095-

1098.

Spellman,P.T., Miller,M., Stewart,J., Troup,C., Sarkans,U., Chervitz,S., Bernhart,D., Sherlock,G., Ball,C., Lepage,M.,

Swiatek,M., Marks,W.L., Goncalves,J., Markel,S., Iordan,D., Shojatalab,M., Pizarro,A., White,J., Hubley,R., Deutsch,E.,

Senger,M., Aronow,B.J., Robinson,A., Bassett,D., Stoeckert,C.J., Jr., and Brazma,A. 2002. Design and implementation

of microarray gene expression markup language (MAGE-ML). Genome Biol. 3:RESEARCH0046.

Stanislaus,R., Chen,C., Franklin,J., Arthur,J., and Almeida,J.S. 2005. AGML Central: web based gel proteomic

infrastructure. Bioinformatics. 21:1754-1757.

Stevens,R., Baker,P., Bechhofer,S., Ng,G., Jacoby,A., Paton,N.W., Goble,C.A., and Brass,A. 2000. TAMBIS:

transparent access to multiple bioinformatics information sources. Bioinformatics 16:184-185.

Sujansky,W. 2002. Heterogeneous Database Integration in Bioinformatics. J. Biomed. Inform. 34:285-298.

Suresh,S., Sujatha,M.S., Mishra,G., Hanumanthu,G.R., Suresh,M., Reddy,R., and Pandey,A. 2005. Proteomic

resources: Integrating biomedical information in humans. Gene 364:13-18.

Tatbul,N., Karpenko,O., and Convey,C. 2001. Data Integration Services.

http://www.cs.brown.edu/people/koa/227papers/chapter.pdf.

Taylor,C.F., Hermjakob,H., Julian,R.K., Jr., Garavelli,J.S., Aebersold,R., and Apweiler,R. 2006. The work of the Human

Proteome Organisation's Proteomics Standards Initiative (HUPO PSI). OMICS. 10:145-151.

Taylor,C.F., Paton,N.W., Garwood,K.L., Kirby,P.D., Stead,D.A., Yin,Z., Deutsch,E.W., Selway,L., Walker,J., Riba-

Garcia,I., Mohammed,S., Deery,M.J., Howard,J.A., Dunkley,T., Aebersold,R., Kell,D.B., Lilley,K.S., Roepstorff,P.,

Yates,J.R., III, Brass,A., Brown,A.J., Cash,P., Gaskell,S.J., Hubbard,S.J., and Oliver,S.G. 2003. A systematic approach

to modeling, capturing, and disseminating proteomics experimental data. Nat. Biotechnol. 21:247-254.

Taylor,C.F., Paton,N.W., Lilley,K.S., Binz,P.A., Julian,R.K., Jr., Jones,A.R., Zhu,W., Apweiler,R., Aebersold,R.,

Deutsch,E.W., Dunn,M.J., Heck,A.J., Leitner,A., Macht,M., Mann,M., Martens,L., Neubert,T.A., Patterson,S.D., Ping,P.,

Seymour,S.L., Souda,P., Tsugita,A., Vandekerckhove,J., Vondriska,T.M., Whitelegge,J.P., Wilkins,M.R., Xenarios,I.,

BBiibblliiooggrraapphhyy

 253

Yates,J.R., III, and Hermjakob,H. 2007. The minimum information about a proteomics experiment (MIAPE). Nat.

Biotechnol. 25:887-893.

The FlyBase Consortium 2003. The FlyBase database of the Drosophila genome projects and community literature.

Nucleic Acids Res. 31:172-175.

Uhlen,M., Bjorling,E., Agaton,C., Szigyarto,C.A., Amini,B., Andersen,E., Andersson,A.C., Angelidou,P., Asplund,A.,

Asplund,C., Berglund,L., Bergstrom,K., Brumer,H., Cerjan,D., Ekstrom,M., Elobeid,A., Eriksson,C., Fagerberg,L.,

Falk,R., Fall,J., Forsberg,M., Bjorklund,M.G., Gumbel,K., Halimi,A., Hallin,I., Hamsten,C., Hansson,M., Hedhammar,M.,

Hercules,G., Kampf,C., Larsson,K., Lindskog,M., Lodewyckx,W., Lund,J., Lundeberg,J., Magnusson,K., Malm,E.,

Nilsson,P., Odling,J., Oksvold,P., Olsson,I., Oster,E., Ottosson,J., Paavilainen,L., Persson,A., Rimini,R., Rockberg,J.,

Runeson,M., Sivertsson,A., Skollermo,A., Steen,J., Stenvall,M., Sterky,F., Stromberg,S., Sundberg,M., Tegel,H.,

Tourle,S., Wahlund,E., Walden,A., Wan,J., Wernerus,H., Westberg,J., Wester,K., Wrethagen,U., Xu,L.L., Hober,S., and

Ponten,F. 2005. A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics. Mol. Cell

Proteomics. 4:1920-1932.

Ullman,J.D. Information Integration Using Logical Views. ICDT '97: 6th International Conference on Database Theory ,

19-40. 1997. Heidelberg, Germany, Springer-Verlag.

Ref Type: Conference Proceeding

Ullman,J.D. and Widom,J.D. 2001. A First Course in Database Systems, 2nd ed. Prentice-Hall: Upper Saddle River,

USA.

Unlu,M., Morgan,M.E., and Minden,J.S. 1997. Difference gel electrophoresis: a single gel method for detecting changes

in protein extracts. Electrophoresis 18:2071-2077.

Velculescu,V.E., Zhang,L., Vogelstein,B., and Kinzler,K.W. 1995. Serial analysis of gene expression. Science 270:484-

487.

Vijayendran,C., Burgemeister,S., Friehs,K., Niehaus,K., and Flaschel,E. 2007. 2DBase: 2D-PAGE database of

Escherichia coli. Biochem. Biophys. Res. Commun. 363:822-827.

Wang,J., Caron,C., He,A., Carpentier,A., Mistou,M.-Y., Gitton,C., Henry,C., and Guillot,A. 2005a. A system for

integrative and post-planned analysis of 2-DE/MS centered proteomics data. Journal of Integrative Bioinformatics - JIB

0012, 2005.

Wang,X., Gorlitsky,R., and Almeida,J.S. 2005b. From XML to RDF: how semantic web technologies will change the

design of 'omic' standards. Nat. Biotechnol. 23:1099-1103.

Wilke,A., Ruckert,C., Bartels,D., Dondrup,M., Goesmann,A., Huser,A.T., Kespohl,S., Linke,B., Mahne,M., McHardy,A.,

Puhler,A., and Meyer,F. 2003. Bioinformatics support for high-throughput proteomics. J. Biotechnol. 106:147-156.

Wilkins,M.R., Appel,R.D., Van Eyk,J.E., Chung,M.C., Gorg,A., Hecker,M., Huber,L.A., Langen,H., Link,A.J., Paik,Y.K.,

Patterson,S.D., Pennington,S.R., Rabilloud,T., Simpson,R.J., Weiss,W., and Dunn,M.J. 2006. Guidelines for the next 10

years of proteomics. Proteomics. 6:4-8.

BBiibblliiooggrraapphhyy

 254

Wilkins,M.R. and Gooley,A.A. 1997. Protein Identification in Proteome Projects. In Proteome Research: New Frontiers in

Functional Genomics. (eds. MR Wilkins, KL Williams, RD Appel, and DF Hochstrasser), pp 35-64. Springer: Berlin,

Germany.

Wilkins,M.R., Sanchez,J.C., Gooley,A.A., Appel,R.D., Humphery-Smith,I., Hochstrasser,D.F., and Williams,K.L. 1996.

Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it.

Biotechnol. Genet. Eng Rev. 13:19-50.

Wojcik,J. and Schachter,V. 2000. Proteomic databases and software on the web. Brief. Bioinform. 1:250-259.

Wong,L. 2002. Technologies for integrating biological data. Brief. Bioinform. 3:389-404.

Wu,C.H., Yeh,L.S., Huang,H., Arminski,L., Castro-Alvear,J., Chen,Y., Hu,Z., Kourtesis,P., Ledley,R.S., Suzek,B.E.,

Vinayaka,C.R., Zhang,J., and Barker,W.C. 2003. The Protein Information Resource. Nucleic Acids Res. 31:345-347.

Xirasagar,S., Gustafson,S., Merrick,B.A., Tomer,K.B., Stasiewicz,S., Chan,D.D., Yost,K.J., III, Yates,J.R., III, Sumner,S.,

Xiao,N., and Waters,M.D. 2004. CEBS object model for systems biology data, SysBio-OM. Bioinformatics. 20:2004-

2015.

Zaluzec,E.J., Gage,D.A., and Watson,J.T. 1995. Matrix-assisted laser desorption ionization mass spectrometry:

applications in peptide and protein characterization. Protein Expr. Purif. 6:109-123.

[No authors listed] 1999. Nomenclature committee of the international union of biochemistry and molecular biology (NC-

IUBMB), Enzyme Supplement 5 (1999). Eur. J Biochem. 264:610-650.

[No authors listed] 2005. Proteomics' new order. Nature 437:169-170.

I

A p p e n d i x I .

APPENDIX I. THE GENETIC MATERIAL

The genetic material

All information necessary to maintain and propagate life is contained within a

linear array of four simple bases.

DNA and RNA

Genetic information, which is present in all organic life forms, is contained within

the genetic material and is transmitted by all living organisms to their subsequent

generations. This material is called the genome and is exclusively formed by

Deoxyribonucleic Acid, the DNA; though, some viruses employ Ribonucleic Acid, the

RNA, as their genetic material. DNA and RNA are macromolecules (polymers) formed

by small units (monomers) called the nucleotides. Those are chemical structural units

consisting of a heterocyclic base (a derivative of purine or pyrimidine), a pentose sugar

(a deoxyribose for DNA and a ribose for RNA), and a phosphate group. There are four

distinct bases in DNA, known as Adenine (A), Guanine (G), Cytosine (C), and

Thymine (T). In RNA, a Uracil (U) replaces the Thymine.

Genes are the fundamental building blocks of genetic material. They consist of a

specific sequence of nucleotides encoded within the DNA - except for some viruses

where genes are encoded within the RNA. In the case of DNA, two linear strands are

maintained together by hydrogen bonds between opposite and complementary G-C on

the one hand, and A-T on the other hand. In consequence, DNA adopts a helix

conformation and forms one or several chromosomes. As a result, a chromosome

groups the genes sequentially and ensures the good functioning of the replication

process and the gene activity procedures. In opposition, RNA is only single stranded.

There are three main processes governing the maintenance and the expression of

genomic information:

- The replication: Maintenance of the identity of the genetic information through a

process of duplicating the DNA code. The genetic information is then

maintained each time a cell divides into two child cells.

- The transcription: Copying of the information into RNA. The process involves

complementarity between the bases and results in the synthesis of single

stranded RNA (a sequence of A, U, G and C). Messenger RNA (mRNA) may

contain coding portions that are intended to be translated into proteins.

AAppppeennddiixx II.. TThhee ggeenneettiicc mmaatteerriiaall

 II

- The translation: Generation of an “active” amino acid sequence (protein) based

on the base sequence contained within the mRNA coding portions.

Figure Appendix - 1: Structure of part of a DNA double helix.1

Proteins

Proteins are the chemical agents responsible for almost each process occurring

throughout a cell life. They play a major role in the regulation of cells’ metabolism, in

the interaction between cells, and are essential for the generation of specific structures.

Proteins are large macromolecules made of amino acids arranged in a linear chain and

adopting specific 3D structures. As already stated, two major steps separate a protein-

coding gene from its protein product: first, the DNA in which the gene resides is

transcribed from DNA to messenger RNA (mRNA), and then this mRNA is translated

into a protein (Figure Appendix - 2).

Amino acids are organic components that are optically active compounds (L-groups)

each carrying four different groups: an amino group, a carboxyl group, a proton, and a

side chain (Figure Appendix - 3). There are 20 distinct amino acids in all living

systems
2
, differing only by their side chain composition. This implies differences in

their physical and chemical properties, such as their size, their charge density

distribution, their hydrophobicity, their proton affinity or electronegativity, etc (Table

Appendix - 1). Joined together by peptide bonds – a bond between the carboxyl of one

amino acid and the amine nitrogen of another (Figure Appendix - 4) – amino acids

form the main chain of the protein. Chemical alterations of the amino acids residues

within a protein, called post-translational modifications or PTM are regularly

observed; they result in specific behaviour and conformation of the modified protein.

More than a hundred distinct PTM are already known, e.g., removing of the methionine

1 Reproduced under the terms of the “GNU Free Documentation License”.

2 http://en.wikipedia.org/wiki/List_of_standard_amino_acids

AAppppeennddiixx II.. TThhee ggeenneettiicc mmaatteerriiaall

 III

starting signal, cleavage of other signal sequences, propeptide excision, attachment of

any of a number of biochemical functional groups, such as acetate, phosphate, various

lipids and carbohydrates. In addition, proteins have the ability to associate amid

themselves to form stable and active complexes. Mature proteins travel to their

destination and fulfil their specific function(s) until their degradation. At this point all

their amino acids constituents are recycled over again in the process of new protein

synthesis.

A protein is composed of amino acids. Three successive bases in the DNA strand, called a codon, can act

as an instruction for the cell to select a specific type of amino acid. A series of codons instruct the cell to

piece together a string of amino acids to form a protein. The cell knows when to begin and stop coding

for proteins by recognizing special start and stop codons that are within the DNA strand. The mechanism

of protein synthesis is carried out by various molecules, including transfer RNA (tRNA), messenger RNA

(mRNA), and ribosomes, which are complex machineries involving dozens of different proteins

associated with structural RNA (rRNA).

Figure Appendix - 2: Transcription and translation.1

1 The graphical part is “Copyright 1999 Access Excellence the National Health Museum”,

http://www.accessexcellence.org/RC/VL/GG/protein_synthesis.html.

AAppppeennddiixx II.. TThhee ggeenneettiicc mmaatteerriiaall

 IV

Figure Appendix - 3: Amino acid basic structure.

Figure Appendix - 4: Formation of a peptide bond between 2 amino acids.

Understanding the function of a protein requires knowing how the polypeptide

chain folds up. The chemical reactivity of the amino acid side chains causes a specific

three-dimensional structure (3D), called the tertiary (Figure Appendix - 5). While the

primary structure depends exclusively on covalent bonds (peptide bonds), it plays a

minor part in the formation of the tertiary structure. One important bond that is

especially important for the tertiary structure is the disulfide bond (disulfide bridge),

which occurs between the side chains of two cysteine residues. Ionic interactions,

hydrogen bonds and Van-der-Waals attractions are also present and accountable for 3D

arrangements.

Figure Appendix - 5: 3D structure of a protein (myoglobine).

AAppppeennddiixx II.. TThhee ggeenneettiicc mmaatteerriiaall

 V

A protein varies hugely in length (from 50 up to 30000 amino acids) and may

adopt different configurations, which determine its functions. It can be involved in

many processes, including enzymatic activities, informative messaging, metabolic

regulation, immune system (antibodies), structural material, etc. One protein may have

several independent and specific functional domains. Several proteins may also interact

among themselves, thus forming together a network, called a pathway.

Table Appendix - 1: Amino acids codes and their physical properties.

Amino Acid 3-Letter 1-Letter Polarity Acidity/Basicity Hydrophob. pI mass (D°)

Alanine Ala A nonpolar neutral 1.8 6.01 71.09

Arginine Arg R polar strongly basic -4.5 10.76 156.19

Asparagine Asn N polar neutral -3.5 5.41 114.11

Aspartic acid Asp D polar acidic -3.5 2.85 115.09

Cysteine Cys C polar neutral 2.5 5.05 103.15

Glutamic acid Glu E polar acidic -3.5 3.15 129.12

Glutamine Gln Q polar neutral -3.5 5.65 128.14

Glycine Gly G nonpolar neutral -0.4 6.06 57.05

Histidine His H polar weakly basic -3.2 7.60 137.14

Isoleucine Ile I nonpolar neutral 4.5 6.05 113.16

Leucine Leu L nonpolar neutral 3.8 6.01 113.16

Lysine Lys K polar basic -3.9 9.60 128.17

Methionine Met M nonpolar neutral 1.9 5.74 131.19

Phenylalanine Phe F nonpolar neutral 2.8 5.49 147.18

Proline Pro P nonpolar neutral 1.6 6.30 97.12

Serine Ser S polar neutral -0.8 5.68 87.08

Threonine Thr T polar neutral -0.7 5.60 101.11

Tryptophan Trp W nonpolar neutral -0.9 5.89 186.12

Tyrosine Tyr Y polar neutral -1.3 5.64 163.18

AAppppeennddiixx II.. TThhee ggeenneettiicc mmaatteerriiaall

 VI

Table Appendix - 2: The universal genetic code of translation from DNA to amino acids.

Codon A.Acid Codon A.Acid Codon A.Acid Codon A.Acid

TTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA STOP TGA STOP
TTG Leu TCG Ser TAG STOP TGG Trp
CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg
ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met* ACG Thr AAG Lys AGG Arg
GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

There are 64 possible combinations. Codons are read on the sense 5’ to 3’. As mRNA is the

template in the translation process, thymine (T) is in fact replaced by uracil (U). *At beginning

of gene, “ATG” signals start of translation.

Alternative splicing

The same gene may code for several proteins differing by their amino acid sequence.

The resulting proteins are named alternative forms or isoforms. The phenomenon is a

precisely regulated post-transcriptional process that occurs before mRNA translation

(Lopez 1998). It is only observed in eukaryotes where a gene generates a transcript of

pre-messenger RNA containing sequential regions called introns and exons. The pre-

messenger RNA undergoes a splicing process, also called “maturation”, during which

introns are excised (removed) while exons can either be concatenated in the mature

message or targeted for removal in different combinations. The resulting sequence is

called a CDS (CoDing Sequence). Sequence rearrangements depend on the cell type

and state, the surrounding conditions and many other regulation factors. The

reconnection of exons leads to various new mRNAs to be translated into different

protein isoforms. This process cancels the old theory of “one gene one protein”. It is of

great importance in species evolution, as it raises dramatically the efficiency and the

flexibility of the encoded information.

VII

A p p e n d i x I I .

APPENDIX II. MASS SPECTROMETRY

Mass spectrometers can be divided into three fundamental parts, namely an ion

source, an ion analyser, and an ion detector. ESI and MALDI techniques are soft

ionisation methods that produce little fragmentation of the ionised peptides. ESI relies

on the direct ionisation of the peptides from solution. It can therefore be interfaced with

liquid separation methods. ESI produces a spraying of an electrically generated fine

steam of ions directed into the inlet of the mass spectrometer. In the MALDI technique,

the sample is mixed with a special matrix acting as a proton donor. The matrix interacts

with the peptides and forms with them crystalloid structures. Those structures are then

exposed at their surface to UV laser pulses, giving them enough energy for evaporation.

The peptides, successively detached from the matrix, are ionised before reaching the

inlet to the spectrometer. The use of laser in MALDI is responsible of the generation of

packets of ions, rather than a steady stream, which shall be “trapped” on the analyser

part of the spectrometer. Contrary to ESI, MALDI ionisation generates only singly

charged ions. Traditionally, MALDI was used to analyse 2-DE separated proteins in

combination with time-of-fly mass analysers (TOF). A small quantity of material is

consumed, which is adapted to the quantity of material that may be contained within a

spot, especially when repeated analyses are needed. The produced spectra are also

easier to interpret, due to the exclusively singly charged ions produced at the source

level. Alternatively, ESI is well adapted for liquid-phase solutions and offers a better

option for high masses exceeding the range of MS sensibilities, given the fact that the

mass-to-charge ratio (m/Z) is lessened when Z > 1.

When the ions reach the analyser part of the spectrometer, they are separated

according to their mass-to-charge ratio (m/Z). There are several types of analysers in

use in proteomics mass spectrometry, but the most common are:

- Ion traps (IT): An ion trap is a combination of electric or magnetic fields that

captures ions in a device, a tube, under vacuum. Ions are “trapped” in a time

varying electric field, and oscillate at frequencies related to their mass-to-charge

ratio. By varying the field parameters, ions are excited and ejected sequentially

from the opposite tube end.

- Time-of-flight (TOF): In this analyser, the particles undergo a high positive

voltage pulsed with a certain rate. While fragments with no charge pass their

way with no deviation, the field repels the similarly charged fragments and

sends them down the perpendicular TOF tube to the detector at its end. Ions

react proportionally to their mass-to-charge ratio, with the lighter ones

travelling the TOF tube faster than the heavier ones. The time spent by the

different fragments is recorded, and quantification of the ratio is rendered.

AAppppeennddiixx IIII.. MMaassss ssppeeccttrroommeettrryy

 VIII

- Quadrupole (Q) and Quadrupole ion trap (QIT): Quadrupole analysers consist

of four parallel metal bars with opposing pairs electrically connected together.

A radio frequency voltage is applied between one pair of bars, and an opposite

voltage is applied on the other pair. An additional current voltage is

superimposed on ions travelling between the quadrupoles. For a given ratio of

voltages, only ions with a specific m/Z ratio will reach the detector, while other

ions adopt an unstable trajectory and end up colliding with the bars. Variation

of the voltages allows the scanning for different m/Z values. Quadrupole ion

traps are a variation of quadrupoles operating with an additional ion trap.

- Fourrier transform ion cyclotron resonance (FT-ICR): Based on the cyclotron

frequency of the ions in a fixed magnetic field. The ions rotate around a

magnetic field with a frequency specific to their m/Z. Variation of the applied

field results in changes to the frequency of rotation, which are measured and

converted using Fourrier transformation.

TOF and FT-ICR are widely used in whole protein analysis. For digested peptides,

QIT and TOF (generally combined with a MALDI source: MALDI-TOF) are the most

commonly used instruments.

The final element of the mass spectrometer is the detector. It records the charge

induced or the current produced when an ion crosses it or hits its surface. The detection

produces a mass spectrum, a record of peptides intensity as a function of m/Z. This

spectrum may provide sufficient information to search a sequence database using just

several values of the revealed masses: this is called Peptide Mass Fingerprinting, or
PMF (Figure Appendix - 6). Some additional features, like knowledge of potential

post-modifications, are sometimes necessary. If the database search is not fruitful or is

not deterministic (non catalogued or uncharacterised protein, inaccurate data, difficulty

to distinguish between several entries in the database), then further information is

required. A Tandem MS study offers the possibility to determine the amino acid

sequences of individual peptides contained in the digest mixture. Further database

searching can then be carried out.

AAppppeennddiixx IIII.. MMaassss ssppeeccttrroommeettrryy

 IX

Figure Appendix - 6: PMF, an experimental spectrum, and an identification workflow at the
Geneva University Hospital1.

Candidate protein sequences extracted from a database are digested in silico according to protease specificity.

Theoretical MS spectra are constructed and compared to the experimental MS spectrum, leading to a similarity

score for each candidate protein. The candidate proteins are then sorted according to their score. The top-

ranked protein is considered as the identification of the spectrum.

Tandem mass spectrometry (tandem MS or MS/MS) consists of several steps of

mass selection, fragmentation and analysis. A tandem mass spectrometer begins by

achieving a first MS analysis step where it measures peptides according to their m/Z

ratio. Specific ions are then selected and fragmented sequentially (parent or precursor

peptides). Resulting fragments are then separated and analysed in a second step. This

1 Courtesy P. Hernandez, SIB / Geneva.

AAppppeennddiixx IIII.. MMaassss ssppeeccttrroommeettrryy

 X

can be achieved by connecting in series different analysers (“in space” tandem MS,

e.g., Q-TOF, or TQ / triple quadrupole), or by performing consecutively the two steps

within the same analyser (“in time” tandem MS, e.g., QIT). For example, in a “in

space” tandem MS, we may have one mass analyser to isolate one specific peptide

entering the spectrometer. A second analyser shall stabilise the peptide ions while they

collide with a gas that causes them to fragment by collision-induced dissociation (CID).

Finally, a third analyser shall collect those induced fragments.

Spectra obtained by tandem mass spectrometry contain series of peaks that originate

from different fragmentation positions in the precursor peptide sequence (Figure

Appendix - 7). Tandem MS spectra are a raw signal that is primary processed into a

generic peak list. Processed spectra include the parent peptide, as well as a list of peaks

corresponding to the diverse fragments that have been produced within the

spectrometer. This is a key property of MS/MS spectra, since information about the

peptide sequence can be deduced from the mass differences between peaks (e.g., De

novo sequencing, peptide fragment fingerprinting) (Mann, Wilm 1995).

Figure Appendix - 7: An annotated MS/MS peak list spectrum.1

Based on knowledge of amino acids masses and their most common modifications,

information about the peptide sequence can be deduced from peak differences. Non-

annotated peaks may originate from unconsidered ion types.

1 Courtesy P. Hernandez, SIB / Geneva.

AAppppeennddiixx IIII.. MMaassss ssppeeccttrroommeettrryy

 XI

In all these approaches, proper handling of mass spectrometric data is critical for the

quality of the final interpretations. Peptide and/or fragment signals have to be extracted

from the original mass spectra with as little noise as possible. Masses are then

compared with their theoretical values calculated from protein or genomic sequence

databases. Appropriate scoring functions are applied to evaluate the accuracy of the

matches. Let us notice though that interpreting a mass spectrum is not a linear or a

straightforward process. Understanding of the used technology, the potential type of

ionisation and fragmentations undergone by the peptides, the likely chemical alterations

of the proteins, and many various factors is crucial for a high quality interpretation.

Many free and commercial tools dedicated to MS identification, differing in their

approaches and algorithms, are available for researchers (Blueggel et al. 2004). As

multiple MS/MS identification algorithms are available or have been theoretically

described, difficulty resides in choosing the most adapted method for each type of

spectra being identified. Finding the right tools among the many possibilities offered

may be a challenge (Hernandez et al. 2006; Lisacek 2006). Besides, with high-

throughput identification data (e.g., with LC-MS/MS), looking at a single spectrum at a

time may undermine a treasure of information, e.g., differential expression. This type of

additional information may be grabbed by considering the entire set of spectra all

together; an approach is carried out using image analysis (Palagi et al. 2005).

XIII

A p p e n d i x I I I .

APPENDIX III. A SURVEY ON THE DEVELOPMENT
OF A PROTEOMICS DATA INTEGRATION SYSTEM

Developing a data integration system involves generally a methodology based on the

following stages (Lacroix, Critchlow 2003a):

- Collection of specifications and requirements

- Conversion of the specifications into a technical representation

(designing)

- Development process

- Deployment, evaluation and reconsideration of the system

Although these are indeed the key stages, they should be considered as a guideline,

and not strictly as a fixed plan to follow. No stage has to be strictly complete before the

next one starts (Schmuller 2004). Throughout the different stages, the project manager

may often feel the need to reconsider some preceding phases for many reasons, among

which the evolution of requirements, real-world technical inconveniences or new and

unsuspected ideas that would benefit to the system.

The specification and requirements

The very first phase when designing a data integration system consists in collecting

a set of requirements that have to be definite and unambiguous. First, it is essential to

acquire a reasonable knowledge and a good understanding of the domain of concern. It

is also imperative to know exactly who the users of the system are. What may they

expect from such a system, or what they can be offered to assist them in their work?

What kind of functionalities the system will put forward and how they will be

presented? It is also important to investigate on the expected technical performance of

the system, as well as on the available human and financial resources that will cover up

its implementation.

User Profile

First, it is important to define what we might call the “user profile”. By “user

profile”, we mean the description of who are the target users as well as the knowledge

and experience they are supposed to have. It is very important to precisely specify the

level of “computer literacy” target users are expected to have, as it will be determining

in the choice of the methods thanks to which they are going to interact with the system.

Having defined the user profile, the various tasks to be performed by the system are to

be listed and analysed. Those consist of what is commonly called “use cases”: How and

for what purpose will a user effectively utilise the system? What are the available data

sources that should (and can) be integrated? How users will formulate their queries and

AAppppeennddiixx IIIIII.. AA ssuurrvveeyy oonn tthhee ddeevveellooppmmeenntt ooff aa pprrootteeoommiiccss ddaattaa iinntteeggrraattiioonn ssyysstteemm

 XIV

what will be the extent of these queries? What is the format of the output? And so on.

One particular challenge for bioinforamticiens in answering those questions remains the

speed at which biological knowledge is evolving and the ever-changing requirements

that accompany this evolution. This is during this same phase that early outlines of the

data model are to be conceptualised.

Technical requirements

Technical considerations are one factor that will determine pure practical aspects of

the system: the platform(s) the system will work on, the storage capacity, the efficiency

with which the system will handle communication and integration overheads, etc.

Operational constraints

Operational constraints depend on both the financial and personal resources

available for the project. An interesting survey on the subject is given by Birney

(Birney, Clamp 2004).

Converting the specifications into a technical representation

At this point, we have to cope with the system optimisation taking into account the

hardware constraints for data management when adopting the predefined specifications.

Here, we also have to take in consideration the maximisation of the system’s efficiency

and the minimisation of its resources’ cost. As an example, regarding a storage costs,

we may decide which integrated items are to be materialised (using a warehouse

approach) and which ones are to be only collected at query execution time (using a

mediator approach). Those choices deeply depend on the purpose for which the system

is intended. For example, a warehouse strategy is a more appropriate choice for a

curation system in which some integrated components may be locally modified or re-

annotated, while for integrated components that should be strictly up-to-date the

mediator approach is more suitable.

The development process

This part can vary enormously in time, depending on the used techniques and the

experience skills of the developers. It includes repeated loops constructing and testing

the code. User interfaces are also built and connected to the code to test their

functionality. In parallel, the technical documentation is written as well as the user

manuals.

Deployment and Evaluation

A working system is then deployed on the appropriate hardware and integrated with

the cooperative systems. Backup and recovery strategies are also set up. The system is

evaluated in order to check if it fully performs as it is supposed to regarding its

specifications. The performance is estimated in time (pre-processing time, query

response time, etc.) and space (used memory, caching, etc.) costs, a task that may often

imply the use of a set of benchmarks. User survey and feedback are also necessary to

estimate users’ satisfaction. Evaluation may often lead to augment or adjust the initial

specifications.

AAppppeennddiixx IIIIII.. AA ssuurrvveeyy oonn tthhee ddeevveellooppmmeenntt ooff aa pprrootteeoommiiccss ddaattaa iinntteeggrraattiioonn ssyysstteemm

 XV

The evaluation criteria

Criteria to evaluate a running integration system may be regarded from both the

implementation (computer science) and the user (biological) perspectives (Lacroix,

Critchlow 2003b). The criteria covers a wide range of issues and may be applied with a

certain degree of flexibility, as their definitions may sometimes overlap or be slightly

formless. Tradeoffs should be taken to balance the needs of the target users:

The implementation perspective

It consists in appreciating the system from a technical point of view driven by user

requirements. For this perspective measurement, cost models are typically taken into

consideration.

- Efficiency: A combination of query efficiency (ability to respond to user

queries), data storage size, communication overhead (data transfer,

frequency of commands executed remotely, potential timeouts) and

integration overhead (complexity of the transformation performed on

source data) define the overall efficiency of the system. Efficiency is

evaluated for the pre-processing step and for the response to a query.

- Extensibility: This is a measurement of the efforts needed to extend or

increase the system functionalities. The bigger the proportion of data

materialisation, the higher the cost of extension will be.

- Functionality: This reflects the number, the type and the complexity of

the queries the system can perform on the data.

- Scalability: The amount of data, number of users and number of data

sources the system can handle simultaneously.

- Understandability: This is the clarity of the system design. It directly

influences the time required by a developer to add or modify

components, especially developers not involved in the original design.

- Usability: This evaluates the easiness with which a user becomes

familiarised with the system functionalities. It also includes the ability

of some user to modify the system behaviour and capabilities.

The user perspective

It is the users’ points of view on the same aspects of the system. It reflects the

overall satisfaction of the users regarding the system.

- Efficiency: Evaluated by the ability of the system to perform queries in

a reasonable time.

- Extensibility: Characterises the efforts needed by a user to customise or

add new types of queries or data, to extend the resources and to modify

AAppppeennddiixx IIIIII.. AA ssuurrvveeyy oonn tthhee ddeevveellooppmmeenntt ooff aa pprrootteeoommiiccss ddaattaa iinntteeggrraattiioonn ssyysstteemm

 XVI

some parameters. A low requirement in programming skills often

denotes a good scale of extensibility.

- Functionality: This, of course, reflects the different types of queries

offered by the system. But it also reflects how those queries can be

combined to form new ones, to answer more complex questions, and

how answers can be sent to other third-party tools (i.e., sending the

output as an input for other programs). Generic systems and systems

allowing the formulation of a diversity of queries are well rated.

- Scalability: In addition to the same attributes as those described in the

implementation perspective, biological researchers are more and more

concerned with the ability to perform batch queries (several sequential

queries, as opposed to a single query at a time). Whenever a researcher

needs to precede many queries in a large-scale process this criteria

becomes really vital.

- Understandability: Users need to fully understand the meaning of the

queries they are performing and what they exactly do (e.g., for a

keyword search query, what part of the data is being searched). All the

semantics used by the interface and within the presented data should be

clearly defined and unambiguous. This point has to be considered with

special care for systems providing global views originating from various

integrated sources, as the latter may have semantics that differs amongst

them.

- Usability: Proposing intuitive access to the system enhances usability.

Interactive and visual interfaces are well adapted when users are not

familiar with the system. Developers may conceive additional parallel

alternatives for more experimented users, (e.g., command line interface,

shortcuts, etc.). In the majority of situations, a good usable system

should never assume or require its users to be or act as “programmers”.

Tradeoffs are unavoidable. They highly depend on the original requirements. Some

of the previous criteria may be mutually exclusive. The inclusion of many resources

(scalability) and semantic consistency (usability) are obviously contradictory. A system

that necessitates presenting the most up-to-date data will probably opt for a non-

materialised mediator approach, raising by the same occasion its extensibility. In fact, it

may suffer a decrease in efficiency because of the extra time needed to contact non-

local resources. At the same time, as the heterogeneity and the number of remote

resources considerably affect the whole performance – a very common issue in biology

areas – many bioinformatics systems tend to be more domain-specific rather than

widely generic.

Ultimately, one should be aware that the overall evaluation is typically a subjective

issue that tightly depends on specific users’ requirements and that it can profoundly

vary between researchers.

XVII

A p p e n d i x I V .

APPENDIX IV. UML

The Unified Modelling Language

Definition

In system development projects, the Unified Modelling Language (UML) is a visual
tool that bridges the gap between the vision of a system and its implementation. It helps

capturing the vision of a system and then enables to communicate this vision to

someone else. Many available works help conferring an overview of the basic elements

of the language, e.g. Schmuller’s “Teach Yourself UML” (Schmuller 2004). For an

exhaustive documentation on the subject, one may refer to the “Unified Modeling

Language Resource Page”
1
, maintained by the Object Management Group and the

UML consortium, and where UML specifications, tutorial and tools are supplied.

Readers of the present document should not consider our use of this language as an

inflexible and one rigid manner to portray our models. In our opinion, there should

never be any obligation to strictly stick to a specific notation. Our goal is to transmit the

ideas and designs we adopted. Any agreed on conventions that can completely and

unambiguously describe a specific system and that are able to communicate it are

perfectly suitable. Actually, we will use some of the basic elements from the current

UML 2.0 specifications, and we will notify the reader whenever any altered or hybrid

annotation is being used.

We should distinguish between a model annotated with UML and the true

implementation of a system. Indeed, the model shows what the system is supposed to

do and how it should behave, but it does not tell how to implement the system. UML

annotations consist of a number of graphical elements that combines by using definite

rules to form diagrams. Thus, a diagram is a partial graphical representation of the

system's model. Actually, many distinct diagrams are suitable for various

representations. Each of them is in fact a specific point of view about the system in

hand, but, as in real life, many points of views may overlap and be complementary,

diagrams are permitted as well to mix and to become hybridised. We will list here some

diagrams that we will be using - separately or mixed - in our document. However, we

will first define some familiar object-orientation notions that are adopted in UML.

1 http://www.uml.org/

AAppppeennddiixx IIVV.. UUMMLL

 XVIII

Many of these notions are also directly applicable to the class diagram representation,
a diagram that we will broadly use throughout this document.

Object-orientation concepts and related UML elements

Objects and Classes

The UML allows designers to build easy-to-use and easy-to-understand models of

objects. An object is an instance of a class. The latter is a category or a group of
“things” that have the same attributes (properties) and operations or methods
(behaviours). For example, ProteinEntry may be a class representing protein entries.

All proteins falling in this category share the same type of attributes; they all have an

accession number, a description text, some related genes, a primary sequence, etc. An

operation may be attached to the Entry class to compute, for example, the molecular

weight of the protein’s primary sequence, and another operation to remove any starting

signal from the provided sequence. By convention, class names are written with their

first character uppercase, while attributes and operations – which are called features of

the class - are not. Operations are assimilated to functions and their names are thus

followed by a pair of parenthesis. Generally, all the names are written in a multiword

that runs all the words together, with each non-initial word beginning with an uppercase

letter. Examples are ProteinEntry for a class, proteinDescription for an attribute and

removeSignal() for an operation.

The UML class is represented by a rectangle divided into 3 parts, the top one

containing the class name, the two others bellow listing the class features. Features’

names are preceded by a ‘+’ sign (public, visible everywhere), by a ‘-’ sign (private,

only visible to the class itslef) or by a ‘#’ sign (protected, only visible to the class itself

and any derived class).

Note that, as we have chosen to present our relational model implementation using a

class diagram, we have adopted many relational systems’ related terms in our

attributes’ definitions. At the same time, classes will themselves be essentially

assimilated to the physically implemented relations (the relational tables).

AAppppeennddiixx IIVV.. UUMMLL

 XIX

An attribute name is followed by a colon followed itself by the attribute’s data type.

In our case, data types are:

Type Description

char(n) A fixed-length string of n characters

varchar(n)
Character varying. When n is given, this means the string may have any length

between 1 and n

text A string attribute of any length. More commonly known as a string type

int
Integer, small-range integer or large-range integer may be précised by short and

long

serial Auto-incrementing integer

float Numeric type with user-specified precision (if given between parenthesis)

date or timestamp Date or date and time type

boolean A boolean type with 3 possible states (true, false or unknown)

type[][]..[] or

ArrayList

A data type may be defined as variable-length multidimensional array. The

dimension is given by the number of brackets’ pairs following the data type

Conditions on the attributes are given between braces “{condition}”. We choose to use

for our conditions any of:

- {PK}: The same sense as the ‘Primary Key’ in relational representation.

Instantiation of the attribute must be unique and defined.

- {FK}: The relational ‘Foreign Key’ definition, which means the

attribute references another class(es)’ primary key(s).

- {Unique}: Instantiation must be unique but not necessarily defined.

- {Not Null}: Instantiation must be defined but not necessarily unique

- {Check: boolean condition}: More specific conditions, e.g., { Check:

attribute = 2 or attribute = 3 or attribute = someFunction() }.

An attribute may also have a default value, which is given after an equal “=” sign, e.g.,

“description : text = my default description text”.

Operations, being assimilated to functions, return a value (which may be a void value).

The type of the returned values is directly given after the operation’s name. Whenever

the operation name is written in italic in the operation compartment, this indicates an

abstract operation, which is an operation defined, but not implemented by an abstract

superclass. The operation must be implemented by all concrete descendant classes.

We have already defined an object to be an instance of a class. In our previous

example, in the Entry class, an instance could be protein <P12345>. To name this

instance, we attach the object name to the class it belongs to using a colon, and we

AAppppeennddiixx IIVV.. UUMMLL

 XX

generally underline the whole designation, e.g., P12345:Entry. Every object has a

specific value for every attribute given by the object’s class. This value can be either a

defined or an undefined (Null) value.

It is also possible to have anonymous instances. An anonymous instance of

ProteinEntry is simply labelled :ProteinEntry.

Modelling with object-oriented concepts

Use of objects in modelling brings with it all the objects’ related aspects. The most

important are:

Abstraction

Abstraction means simply to filter out the many properties and operations of an

object until only the ones we need are kept. This will greatly depend on the purpose of

the object itself, and on how it is going to be used. For example, for people working

with different spectrometers within one group, it may be important to know the mass

spectrometer serial number, while it will be of no use to anyone outside the group.

 A mass spectrometer serial number, for example, is important to know for people

working with different spectrometers within one group, while it will not be of any use

to any one outside the group.

Inheritance

In the world of object-orientation, classes may inherit all the attributes and

operations from another class. This is called inheritance in object-oritentation or

generalisation in UML, an ‘ is a Kind Of ’ relationship. The inheriting classes are then

considered as subclasses of the superclass. Subclasses can independently add their own

attributes and operations, or even redefine the inherited ones but without affecting their

superclass. As an example, IdentificationMethod may be the superclass of the

subclasses TandemMassSpectrometry, AminoAcidComposition and Microsequencing.

These three subclasses share together all inherited features from their common

superclass. At the same time, they individually add attributes and operations specific to

each of them. Subclasses are related to their superclass using a pointed array line.

AAppppeennddiixx IIVV.. UUMMLL

 XXI

Polymorphism

An operation may sometimes have the same name in different classes. In the given

inheritance example, genralIdentificationReport() represents an operation that

generates a text report describing the identification process. The method is inherited as

is by the Microsquencing class, but it is redefined to proceed differently in both the

other two subclasses (this is why we write down the method name in these two

subclasses). To obtain an identification report, one only needs to perform the “same”

operation on any of the different identification classes to obtain the corresponding

output report. This is called polymorphism.

Encapsulation

Encapsulation means that an object can hide what it contains and what it does from

other objects (and from the outside world). At the same time, the object needs to

present a “face” to the outside world so it can perform some operation when another

object is asking for it. To give an example, let us consider the

TandemMassSpectrometry class as defined in the inheritance example above. We have

chosen to make all the attributes private (symbolised by a ‘-’ sign) within the class.

This means that all these attributes are hidden outside of the class. Meanwhile, the

operation generateIdentificationReport() is public (preceded with a ‘+’ sign) so that

any other object can ask for the identification text report without caring about what’s

inside the class. If, for some reason, the class is modified - for example if we choose to

provide all the mzData content instead of just giving a file path – only the operation

will have to be adapted. The other objects will not be aware of any such inner

modification. GenerateIdentificationReport() acts as an operation that the

TandemMassSpectrometry class may present to the outside world through some

interface. To make use of an interface, the requiring objects will need to send a specific

activation message that the interface is capable of interpreting and proceeding. We will

see later in this section how interfaces are effectively presented in UML.

AAppppeennddiixx IIVV.. UUMMLL

 XXII

Associations

Objects are typically related to one another in some manner. We may for example

define a class called Gel containing all the attributes related to the 2-DE gel itself. Now,

when we define another class, the class Spot, to capture the properties related to the

spots, we recognise that each spot is located on a specific gel, which itself is defined as

a Gel object. There is obviously a relationship between a Spot object and a Gel object;

this is called association. This is represented by a simple line linking two classes.

Unless specified, navigation is bi-directional. Whenever the association is limited to

just one direction, an arrowhead pointing to the direction of traversal is adorned at one

end of the association line (in the relational schema representation, we will not need to

explicitly represent navigation directions).

Multiplicity indicates the number of objects in one class that relate to a single object

of the associated class. In our Gel / Spot example, a spot should refer to a unique gel

whereas the gel may contain any number of spots. This is called a one-to-many

association, and is represented by a ‘1’ at one end and a ‘0..*’ at the other end of the

association line, the ‘0..*’ telling that a Gel object may contain any number of spots

ranging from zero to infinity. We may also give a list of all possible values separated by

commas, ‘1,3,7’ meaning for example that only a multiplicity of those three values is

authorised.

In the relational model, a many-to-many association cannot be implemented in practice

without using an intermediate table. For example, we may have a class for authors and

another class for papers. One author may write several papers, while a paper can be

written by several authors. The following association:

Is then implemented in a relational schema by:

Here, we create AuthorPaper objects that reference each a unique author and a unique

paper. Reciprocally, an author or a paper may be referenced by any number of

AuthorPaper objects. In a relational schema, AuthorPaper is called “junction table”.

For a many-to-many association, we may prefer to emphasise the visualisation of the

model in a better manner. This can be done using association classes. In fact, an

AAppppeennddiixx IIVV.. UUMMLL

 XXIII

association can have attributes and operations, exactly like any other class; it can also

have associations to other classes. The next illustration shows the use of an association

class in the same example as previously given:

Here, we show the AuthorPaper association class making the junction between the

Paper and the Author classes. An attribute, authorRank, defines the author’s rank in the

authors’ list and is part of the class features, along with the operation

serialiseAuthorRank(), which ensures that authors’ ranks are serialised (1,2,..). We add

the role {ordered} to indicate that some sequence ordering is being applied. We also

see how AuthorPapaer can have associations with any other class, like being

referenced by a ReferenceView class responsible for building reference views. We may

notice that we used the optional navigation arrowhead for the association between

ReferenceView and AuthorPaper to explicitly point out that the former gets information

from the latter, but not the other way round.

Aggregation

An object may be composed by a number of different types of components. A

protein entry in a 2-DE database may for example contain a unique identified protein,

any number of identified spots (at least one) and any number of related publications.

This is a ‘ has a ’ (and reciprocally ‘ part of ’) relationship. We represent these

aggregation associations by using a diamond head on top of the associations:

AAppppeennddiixx IIVV.. UUMMLL

 XXIV

A stronger type of aggregation is the composition type. It occurs in situations where
the component only exists within the composite object. For example, this document is

composed, let us say, of an introduction, 4 to 8 chapters and a conclusion. Each of these

components can only exist within this specific document. We may also include a

French or a German summary (but not both at the same time):

We use a filled diamond head this time to highlight the composition character. We also

introduced two new annotations here. One is the constraint implying that the

composition should contain a FrSummary or a GrSummary, but not both. Constraints

are written within braces. The second annotation is the note that we attached to the
ThesisDocument class and which can contain any textual comment.

Stereotypes

A stereotype is not an object-orientation concept, but rather a UML feature that permits

the creation of new concepts or symbols. Stereotypes are placed on existing UML

elements and are presented enclosed in two pairs of angle brackets. This notion is

indeed used with interfaces’ representation. An interface can be considered as a class

that has only operations but no attributes. Instead of using a new element for interfaces,

we commonly use a stereotype, like in the following example:

Interfaces and Realisation

This brings up the discussion back to interfaces. You do not implement the

operations in an interface class. A class that implements an interface implements each

of the operations defined in the interface class. In other words, the interface class

provides no method bodies for the operations it defines; the class that implements the

interface provides method bodies for each of the operations defined in the interface.

The relationship between a class and its interface is called realisation. Several

classes may “realise” the same interface, and a single class may also realise several

AAppppeennddiixx IIVV.. UUMMLL

 XXV

interfaces. At the opposite side, a class that activates an interface – by sending it an

appropriate message – generally falls into a dependency relationship towards this
interface. We get back to our previous example on identification classes that

implements the public operation genralIdentificationReport(). This operation can now

be declared in some interface called, for example, GetIdentificationReport. All the

identification classes should realise this interface. A class that contains, for example,

materialised views
1
 of 2-DE entries can rely on this interface to get the identification

reports, and thus it depends on it. There are two ways for representing this in UML, the

full and the elided notation.

The full notation uses for realisation a similar symbol similar to the one used in

generalisation, except that the line is dashed. Dependency is also represented with a

dashed line but with an arrowhead pointing to the interface:

The more recent elided notation represents the interface by a circle that is called a “ball-

and-socket” symbol:

In this document, we will generally use the first notation whenever an interface is

introduced for the first time, and the second notation for any further illustration

including the already introduced interface.

1 A materialised view in the relational world is a concrete table, as opposed to a virtual view. Materialised views offer more

efficient access, but at the cost of being potentially out-of-date. Due to their physical materialisation, we can consider
them in modelling as full-fledged classes.

AAppppeennddiixx IIVV.. UUMMLL

 XXVI

Diagrams

Class, object and package Diagrams

In the Unified Modeling Language, a class diagram is a type of static structure

diagram that describes the structure of a system by showing the system's classes, their

attributes and their operations or methods. Associations and relationships between the

classes show how the different classes are related. This type of diagrams is perfectly

appropriate for describing data structure and implementation design, but it is also very

helpful in problem analyses. A class diagram, when adapted for, can also fit perfectly to

portray a relational schema, and this is why we have opted to use it in rendering our

database structure. Actually, relational data structures are quite commonly designed

using the Entity-Relationship (ER) method, a non-UML representation that is meant

for relational implementations (Chen 1976). However, the logical relations between

objects may not be always obvious using such a method. We prefer to emphasise the

logic of these relationships in our representation using class diagrams, and, when

needed, some ER elements. Full technical implementation details will be accessible

though through external Web links that we will give when necessary.

An object diagram simply shows how instances of classes are linked together in an

instant of time (like in a snapshot). We have already introduced in the previous sections

many of the elements that are employed in such diagrams, the class and the object

diagrams, but we have not introduced packages yet. Although it is considered that

package diagrams can support most of the many diagram types, we have chosen, for

simplification purpose, to only introduce it in conjunction with class diagrams. A

package, as its name implies, is designed to group the elements of a diagram.

Graphically, it is a tabbed-folder surrounding elements that can be logically grouped

together. A package has a name, which becomes the namespace of the grouped
elements. Consequently, to reference an element within a package, we simply designate

it by PackageName::PackageElement; this is called a fully qualified name, e.g.,

IdentificationPackage::Microsquencing.

Packages may contain other packages. Besides, they can relate to one another in

three different ways: Through generalisation (a package can inherit from another one),

through dependency (package elements may depend on the elements of another), and

AAppppeennddiixx IIVV.. UUMMLL

 XXVII

through refinement (a package refines another when it contains the same elements but

with more details). The first two relationships use the same symbols we have already

used with classes, while the refinement employs a dependency symbol supplemented

by the stereotype <<refine>>.

A subsystem is a set of elements, which is a system by itself, and a part of the whole

system. It is considered both a package and a classifier (a category grouping several
elements that have some common features). We could have grouped the

IdentificationPackage elements inside a subsystem instead of a package due to the

similarity of their features (and as a consequence of the generalisation they all get from

their superclass). Subsystem notation is slightly different from the package one:

Use Case Diagram

Use case diagram is a description of a system’s behaviour from a user’s standpoint.

The user himself is represented by a little stick figure called actor (an actor is not
necessarily a physical person, but rather a defined role). Use case actions are

represented by ovals. As an illustration, here is a very simple use case diagram

presenting the users’ perspectives when installing, updating and using the Make2D-DB

II tool:

AAppppeennddiixx IIVV.. UUMMLL

 XXVIII

A use case diagram is noticeably self-explanatory. The different actors have well

defined roles, but they may also perform the same use cases. A use case may include

another use case using the stereotype <<include>> on a dependency symbol. A use case

may also be extended by another one, using the stereotype <<extend>>. Conditions for

the extension can be described in the extended use case.

Component Diagram

As its name indicates, a component diagram contains components, along with

interfaces and relationships. This type of diagram is especially useful to show how the

constituents of a whole or of a subsystem interact together. A component is a modular

part of a system that is strictly logical. It can perform operations and can provide

interfaces to other components. Components are autonomous and they define a

system’s functionality, by contrast to data files, documents, executables or dynamic

libraries that are all pieces of information called artefacts that a system uses or

produces
1
. An executable, for example, is the implementation of a component, just as a

component is a logical “implementation” of one or more classes.

Component diagrams are useful because they provide a high-level, architectural view of

the system. The idea is that we should easily be able to reuse or substitute any

component implementation in a design because a component encapsulates behaviour

and implements specified interfaces.

1 Until UML version 2.0, artefacts were frequently considered as components, which have led to much confusion among

modelers.

AAppppeennddiixx IIVV.. UUMMLL

 XXIX

To illustrate this idea, let us think of a concrete example. We want to stock all mass

spectra peak lists in a very simple repository that – for simplification purpose – only

stores the different spectra peaks and gives each list a unique identifier. We may

module this by a plain class that we call MassSpectraPeaks. This class has an operation

that reads the processed spectra, and provides an operation that output the peak list

values:

At that point, we make the decision to implement our model using a relational database

implementation. This implementation must be able to read the processed files (being

themselves artefacts) and to provide an interface that output peaks lists (e.g., using SQL

queries). This is the autonomous component that reflects the logical implementation of

our system:

We may decide to physically implement our component using any suitable relational

database management system, e.g., a PostgreSQL or an Oracle implementation. This

can be shown by a dependency relationship stereotyped <<implement>> between the

component and the implemented artefact. The implementation choice should never

affect the logic dictated by the component.

We may choose, in a further step, to link our component to another component, a

viewer, which gets a spectrum identifier, generates a SQL query and then graphically

displays the spectrum. The physical implementation of such a viewer may also be made

in any appropriate language.

AAppppeennddiixx IIVV.. UUMMLL

 XXX

A component can inherit from another component and may contain inner components

as well.

Deployment Diagram

A deployment diagram shows how the artefacts, already presented as components’

implementation, are deployed on system hardware. The elements used in deployment

diagrams are nodes (embodied by cubes), artefacts and associations (links). Outer

nodes are devices, while inner nodes indicate execution environments (operating

systems, language interpreters, etc.) rather than hardware. In addition to classic

associations, elements may be related through generalisation and dependency

relationships or communicate through interfaces.

We have chosen to portray a fictive installation of two instantiated artefacts of Make2D

relational databases installed on a specific database server (an instantiated node) that

are accessed by the implemented query interface of the same tool installed on another

specific Web server. We also see that it is possible to designate an artefact that provides

parameters for another artefact using the stereotype <<deployment spec>>; this is what

we have employed with the 2-DE Web interface in the same example.

Activity Diagram

An activity diagram is designed to illustrate what happens during an operation or a

process. Activities are symbolised by a rectangle with rounded corners. When an

activity is completed, a transition to the following activity occurs, which is represented

by an arrow pointing to the next activity. Activity diagrams have a starting point (a

filled-in circle) and an endpoint (a bull’s eye). Whenever a decision must be made, the

path is split into two (or several) mutually exclusive paths, each with its own condition

AAppppeennddiixx IIVV.. UUMMLL

 XXXI

written between brackets. A diamond is used to state that a condition has to be taken

with the possible paths flowing out of it. Concurrency is represented with a solid bold

line perpendicular to the transition with the paths coming out of it. The same kind of

line is used to merge the concurrent paths together. Activity’s input and output can be

specified using small boxes over the transition. In addition, any activity process should

be able to send signals to other processes; this is indicated by a convex polygon for the
transmission event, and a concave polygon for the reception event.

We display here a simplified activity diagram representing the process of launching

the Make-2D-DB II tool. This part schematises, for illustration purpose, the checking of

the provided data (if any), the integration of some external data, and the construction of

the relational 2-DE database:

An activity diagram can easily be made hybrid by incorporating elements from other

diagrams. For example, it can incorporate actors to show who does what, or objects that

perform some operations.

AAppppeennddiixx IIVV.. UUMMLL

 XXXII

We find it suitable to incorporate some standard flowchart elements within an activity

diagram, even though flowchart elements are not UML elements. This will offer a

much expressive visualisation of the activity details:

__

Before concluding this appendix, it is important to insist on the fact that this

summary was not intended to exhaustively depict UML notations. We have for

example skipped all dynamic and time-dependent representations, e.g., state and

sequence diagrams. Our intention was only to portray the elements that we will be

using throughout this document.

XXXIII

A p p e n d i x V .

APPENDIX V. RELATIONAL DATABASES

And the PostgreSQL ORDBMS

Relational databases

To present the relational model, relational databases and the SQL

language is beyond the scope of the present document. There are many

printed publications and Web tutorials covering these subjects, and the

reader is welcome to consult them for more details. This appendix intends to

summarise some of the terms that we are using throughout this manuscript,

and to present some of the aspects of PostgreSQL, the database management

system we have adopted for our project.

A database can be assimilated to a collection of related files. How those

files are related depends on the model used. Early models relating files

included the hierarchical model (a parent/child relation between files), and

the network model (an owner and member relation). The relational database

model was invented in 1970 by Codd
1
 (Codd 1970). This was a significant

advance, as it allowed files to be related by means of a common field. To be

related a pair of files only needs to have in common one or several fields and

that makes the model extremely flexible.

Relational databases are built in a Relational Database Management

System: RDBMS. The most common definition of a RDBMS is a system

that presents a view of data as a collection of rows and columns not based

strictly on relational theory. The majority of popular RDBMS products do

not necessarily implement all of Codd's 12 rules. Almost all RDBMS

employ SQL, the Structured Query Language, as their query language. SQL
is based on relational algebra. It is an ANSI and ISO standardised computer

language used to create, retrieve, update and delete data from relational

databases. An introduction to SQL is available at the w3schools Web site
2
.

1 http://en.wikipedia.org/wiki/Relational_database

2 http://www.w3schools.com/sql/default.asp

AAppppeennddiixx VV.. RReellaattiioonnaall ddaattaabbaasseess

 XXXIV

Components

Strictly speaking, a relational database is a set of relations, commonly

known as tables, in addition to other items that help to organise and structure

the data.

Relations or tables

A relation, represented by a table, is defined to be a set of tuples (a finite

and ordered sequence of distinct objects) having all the same attributes. A

table is therefore organised in rows and columns, like in the following

example (Table Spot).

Table
Spot

spotID

(serial)

pI

(float)

Mw

(int)

identified

(boolean)

identifiedProtein

(varchar)

tuple

1

100 5.50 22300 True P12345

tuple

2

101 6.50 32500 False Null

tuple

3

102 7.89 40000 True P34567

tuple

n

… … … … …

In a relational database all data is actually stored as relations. The term

relavar is the “relation variable” which is physically schematised by a table.

Some relvars do not have their data stored in them but are the outcome of the

application of relational operations to other relvars. These relavars are then

called “derived relavars”, or simply views. At a certain level, derived relvars
are not strictly considered as part of the relational model.

Constraints

Restrictions on the kinds of data that can be stored in the relation are

called constraints. They are formally defined in the form of expressions that

result in a boolean value.

Data domain

Data domain may be considered as a constraint, in the sense that it defines

the set of possible values for a given attribute. In the Spot table, the pI float

attributes (columns)
tuples
(rows)

AAppppeennddiixx VV.. RReellaattiioonnaall ddaattaabbaasseess

 XXXV

attribute should be limited to the numeric data domain between 0.00 and

14.00 not included, and Mw should be only positive.

Defined values and uniqueness

Some attributes should be defined, meaning that they should be given a

value; a Null value being an undefined value, constraining an attribute to be
defined is represented by the constraint {Not Null}. For example, Mw in the

Spot table has a {Not Null} constraint. At the same time, some other

attributes, if defined, should be unique in their relation; this is represented
by the constraint {Unique}. A gene alias for example should be unique in a

Gene relation but does not have the {Not Null} constraint. Whenever an

attribute has both constraints, it falls in what is known to be a primary key.

Keys

A key is a kind of constraint that implies that a tuple, or part of the

information it contains, is not duplicated in a table. This is achieved in a

relational database using a Primary Key constraint {PK}. In the Spot Table,
spotID is indeed a primary key. Each spot (a tuple) must have a defined and

unique value for this attribute. A primary key may also be composed of

several attributes, each of them having to be defined. Only the combination

of these attributes has to be unique. In a Person relation, where we may

define two attributes firstName and FamilyName, a primary key would be

the combination of both the two attributes. Several people may be of the

same family, and several people may share the same first name as well, but

two persons should never have exactly the same first name and family

names.

Foreign keys

A Foreign Key {FK} is a reference to a primary key in another table. The

referencing tuple has, as part of its attributes, the same value(s) of a key in

the referenced tuple. Foreign keys may reference defined {Unique}

attributes as well as {PK} attributes.

More constraints

In the Spot table, Mw must be a positive value, which is expressed by

{Check: Mw > 0}. We have also intentionally included the attribute

identified, which tells if a spot has been identified or not. It seems logical

that a non-identified spot should not present any protein in its

identifiedProtein attribute. We can express such a constraint by the boolean

expression: {Check: identified is True OR (identified is False AND

identifiedProtein is Null)}. Constraints may contain also functions,

procedures or operations in the boolean expression. If, instead of the

attribute identified, there was a function that returns a boolean value telling

whether or not a spot has been identified, we would employ a constraint of

the form {Check: hasBeenIdentified(spotID) is True OR identifiedProtein is

Null}.

AAppppeennddiixx VV.. RReellaattiioonnaall ddaattaabbaasseess

 XXXVI

Rules, stored procedures and triggers

A rule in a database is a way to rewrite some specific SQL queries, or to

automatically add some additional SQL instructions to an initial one. An

example would be to automatically switch a flag attribute to ON whenever

some relevant information has been modified. The switch of an

annotationChanged attribute to ON within an EntryVersion tuple whenever

some specific annotations found in other tables and related to the Entry tuple

are modified represents a concrete illustration of a rule.

Stored procedures are executable code associated with the database. The
RDBMS may offer the possibility to perform some “complex” operations

using one or several programming languages or scripts. Procedures are

assimilated to functions. They may operate with some specific input

parameters and they always return a value of a definite data type. Stored

procedures may perform many kinds of common operations, among which:

� Simple control operations, e.g., hasBeenIdentified(spotID) : boolean

� Statistical operations, e.g., numberOfIdentifiedSpots() : int

� Select operations, e.g., selectAllIdentifiedSpotsSinceDate(Date) :

record/table

� Update operations, e.g., updateProteinEntryView(accessionNumber) :

boolean

� …

Besides, a procedure may execute another procedure, and may even generate

and compile code for new procedures.

Triggers are activation processes that are associated with some function

or procedure and that are “fired” before or after a specific operation is

attempted on a tuple. In insert, update or delete operations, triggers can “see”

any potential old and new attribute value, which is very convenient when

having to perform some special operations depending on data substance. For

example, we may want to fire a trigger associated with a function, which

increments a protein entry version by 1, if, and only if, some specific

attributes are modified and that their new values are different from the initial

ones.

Indexes and sequences

Indexes, based on one or several attributes, are used to improve

performance when accessing tables. They help to reduce the scanned subset

of tuples. Although it is the optimiser - the process responsible for setting up
the best query plan to adopt – that decides whether to use a relational index

to access data, it is up to the database manager to build up the appropriate

indexes that will improve performance. RDBMS provide different indexing

AAppppeennddiixx VV.. RReellaattiioonnaall ddaattaabbaasseess

 XXXVII

methods, among which the B-tree (a tree data structure) and the hash table

(keys/values association) methods.

Sequence objects are special single-row tables that help to generate

automatically ordered attributes’ values. Sequences are usually used to

generate unique sequential identifiers for a table’s rows. The special integer

data type serial, used above with spotID, is an example of the use of a

sequence to generate automatic identifiers.

PostgreSQL

To physically realise and manage our data model, we needed a stable

database management system that offers extended capabilities in

implementing stored procedures, and in using slightly complex data types.

Besides, the system had to be free of charge, our main condition in the

choice of the component.

PostgreSQL
1
 is an open source ORDBMS (Object-relational Database

Management System) developed at the University of California
2
, and

running on all major operating systems. PostgreSQL is not controlled by any

single company, but it relies on a global community of developers and

companies to develop it.

In fact, it would be more correct to consider PostgreSQL as a

conventional RDMBS enhanced with a layer simulating object-oriented

characteristics. These characteristics are:

� Object Identifier (OID): each tuple (object) has a unique identifier

within the same table and this identifier is independent from the tuple

content. Tables containing rows have also a table object identifier.

� Inheritance: Tables can be set to inherit attributes and behaviours from

a parent table. Data is then shared between parent and child(ren)

table(s). Yet, some of the constraints are not currently inheritable.

� Complex data types: In addition to the multi-dimensional arrays, users

can create their own complex data types.

� Large objects: PostgresSQL has a facility to store binary large objects,

also known as BLOBs, such as graphical and XML files. Objects are

then manipulated using their OIDs. However, portability of BLOBs

is not supported.

1 http://www.postgresql.org/

2 Copyright © 1996 – 2007 PostgreSQL Global Development Group, under the BSD license

AAppppeennddiixx VV.. RReellaattiioonnaall ddaattaabbaasseess

 XXXVIII

An overview of the main differences between Object-oriented Database

Management Systems (ODBMS) and RDBMS is summarised in the

following table:

Aspect Object-oritented Relational
Data accessibility permanent data stored data
Entities objects (classes) normalised relations

(tables)
Identifiers object identifiers (OID) primary keys
Data structure complex data types atomic attributes
Functionality object behaviour

(operations, methods)
procedures, rules,
triggers, functions

Modelling object type relational schema
Inter-dependency inheritance, encapsulation,

polymorphisme
independence of
relations

Integrity /
concurrency

risky good

Speed performance very high average
Specifications’
stability

low high

A few non-commercial ODBMS have been offered only over the last couple

of years. Before this, the non-availability of functional free of charge object-

oriented systems was one of the main reasons why we did not consider the

possibility to adopt an object-oriented database approach for our project.

Advantages using PostgreSQL

Being reasonably stable, PostgreSQL has a number of significant advantages

- related to our work - when compared to conventional RDBMS (e.g.,

MySQL
1
):

� It runs stored server-side procedures in more than a dozen

programming languages, including Java, Perl, Python, Ruby, Tcl,

C/C++, and its own PL/pgSQL
2
, which is a procedural language

similar to Oracle's PL/SQL.

� It has a rich set of native data types available to users. The most

important are: arbitrary precision numbers, variable-length character

texts, multi-dimensional arrays of any data type (unfortunately with

very limited capabilities to exploit the arrays). It has as well a set of

pseudo-types like the “any” (indicating that a function accepts any

1 http://www.mysql.com/

2 Make2D-DB II uses extensively PL/pgSQL
(http://www.postgresql.org/docs/8.2/interactive/plpgsql.html)

AAppppeennddiixx VV.. RReellaattiioonnaall ddaattaabbaasseess

 XXXIX

data type), and “record” (for a function to return an unspecified row

type). Users may also add new complex types.

� It extends standard constraints’ expressions using “{Check boolean

expression}”.

� It introduces namespaces for objects through schemas’ repartition.

� It optimises many management features, including user-defined

indexation of tables and ensures integrity with MVCC (multi-version

concurrency control). It also performs statistics for efficient

execution plans of queries and for garbage collection.

� PostgreSQL also offers extended capabilities to work with regular

expressions, which is very convenient in analysing data and in

assembling human readable views.

There are also many library interfaces (APIs) allowing various languages,

both compiled and interpreted, to interface with PostgreSQL. There are

interfaces for Perl (DBI), Java (JDBC), ODBC, Python, Ruby, C, C++ and

PHP to name the most common of them.

A significant drawback, which mainly originates from our extensive use of

server-side procedures, is the need to cope with any specifications’ changes

between PostgreSQL public releases. Adaptations of our code were

sometimes necessary to deal with some of the critical specifications’

changes.

XLI

A p p e n d i x V I .

APPENDIX VI. THE INSTALLATION PROCESS

Screenshots / shell captions

Information regarding the tool using the <help> option (a truncated shell caption):

Perl make2db.pl -help

MAKE2DB(1) User Contributed Perl Documentation MAKE2DB(1)

The Make2D-DB II Package (version: 2.50.1 / September 2006)

 Before, launch:

 createlang plpgsql template1 --pglib "/pgsql/lib path"
 initdb -D [DB path]
 postmaster -i -d 1 -D [DB path] > [DB path/server.log] 2>&1 &

 Execution:

 perl make2db.pl -<m> [option]

 where option is one of:

 config -> Set up the configuration…

 check -> Check the syntax and the consistency of your database…

 check-report -> Same as 'check', except it does not stop on major

errors…

 create -> Create the relational schema for a database from

scratch…

 transform -> Combine the 'check', the 'create' and the 'server'

options…

 update -> For both updates of the schema structure and the

database…

 server -> This option can be used independently if you wish to

host an interface to query others remote databases
without even having your own database. It is also to
be used when some errors are encountered due to
invalid permissions while moving some of the
files to the HTTP server. The script can then be re-
executed with this option to only set up the HTTP
server files.

 e.g: ' perl make2db.pl -m transform '

 If you want to specify another path for your configuration files to be
read
 or written (not the default one),
 use the switch '-c' followed by by the new path:

AAppppeennddiixx VVII.. TThhee iinnssttaallllaattiioonn pprroocceessss

 XLII

 ex: perl make2db.pl -m config -c your_path_here

 A shortcut to run a default configuration process without any special
choice

 perl make2db.pl -m config default

 For help (diplays this text):
 type 'perl make2db.pl -h' or 'perl make2db.pl --help'

 To exit this manuel, press the letter 'q'

AUTHOR
 Khaled Mostaguir, khaled.mostaguir@isb-sib.ch

ACKNOWLEDGEMENTS
 An evolution of the make2ddb package concepts (Christine Hoogland and
al).

2006-09-25 perl v5.6.1 MAKE2DB(1)
(END)

Running the tool with the <config> option (a shell caption):

perl make2db.pl -m config

*** Make2D-DB II Package - version: 2.50.1 (04-Sep-2006) ***
==

 [The Configuration File Generator - version: 2.50]

* You are about to set up the configuration files for the Make2DB-DB II tool *

Two files can be set up:

- include.cfg : configuration parameters for the instllation of the database
- 2d_include.pl: configuration parameters for the the WEB server

Please, choose between setting up your configuration files for a new database
installation, or changing the parameters of an already running WEB server:

--> [1] New Installation
--> [2] Changing a Running Server Parameters
--> [3] Generate a new maps' file
--> [4] Exit

� [1]

* Prepare your configuration files for a new installation *

Please, choose between reading the default setting values from the default
configuration files, provided with the tool, or from your very last personal
configuration files.

You may also configure only a Web portal, to contact other remote interfaces,
without necessarily providing any personal data.

--> [1] Default configuration files
--> [2] Last personal configuration files
--> [3] Configure a Web portal
--> [4] Exit

AAppppeennddiixx VVII.. TThhee iinnssttaallllaattiioonn pprroocceessss

 XLIII

Running the tool with the <transform> option (a shell caption):

perl make2db.pl –m transform

*** Make2D-DB II Package - version: 2.50.1 (04-Sep-2006) ***

--- Date: Mon Oct 15 18:02:39 CEST 2007
 Perl version: This is perl, v5.6.1 built for i386-linux
 Lang: en_US.iso885915
 System: Linux mordor.expasy.org 2.4.23 #1 Tue Dec 23 09:22:28 CET 2003 i686

 [option: -m transform]

--- Database official name: 'Test Database'
--- Database postgreSQL name: 'test_database'

... Updating the Cross-Reference list from the ExPASy server..
... Updating the Swiss-Prot tissue list and aliases from the ExPASy server..

Extracting annotation from maps / from text/xml reports in progress...

No flat file yet. Your data is assumed to be in tabulated (spreadsheet) format
or in Melanie XML generated files.

The following files are being analyzed and translated to build a flat file
ending with a 'spot data' section:
 -- /home/world-2dpage/test_database/FIGURE1.txt
 -- /home/world-2dpage/test_database/FIGURE2A.txt

Flat file automatically generated!

Do you want to examine or edit the new generated flat file (to add, for
example, some extra annotations or cross references)?
Type 'yes', otherwise press <RETURN> to continue

Importing mapping methods definition into the new database...

Now checking the flat file structure, syntax and consistency...

**UniProtKB/Swiss-Prot - Swiss-Prot --
...Checking entry P00277
...Checking entry P00350
…
Connecting to the Newt database to retrieve taxonomy data (please, be
patient)...
..... Taxonomy Retrieval Performed!
…
Connecting to the ExPASy SRS server to retrieve external data (please, be
patient)...

WARNING: one of your UniProtKB accession numbers (P31059 / TaxID=83333) has
been demerged!!
[1] P0A7C0; P31059; P97542; [TaxID:83334] {Escherichia coli O157:H7.}
[2] P0A7B9; P31059; P97542; [TaxID:217992] {Escherichia coli O6.}
[3] P0A7B8; P31059; P97542; Q2M8M8; [TaxID:83333] {Escherichia coli (strain
K12).}

assigning the following UniProtKB entry for P31059 => P0A7B8

..... SRS Retrieval Performed!

Connecting to the ExPASy server to retrieve external links for computable
maps...
..... Computable Maps Retrieval Performed!

Your DataBase file has been checked with success!
You can check the file 'last_STDOUT.log' for a detailed report:
 '/home/world-2dpage/Make2D-DB_II/temp/last_STDOUT.test_database.log'

Ready to start the 'test_database' DataBase Construction and to upload your
data into it.
Press 'RETURN'! (ctrl-C to abort)
…

AAppppeennddiixx VVII.. TThhee iinnssttaallllaattiioonn pprroocceessss

 XLIV

The relational database implementation using the <transform> option (a truncated shell caption):

…
Now Creating your new Database...

Creating a new postgreSQL user named 'select2d' to query the database without
owning it...
< Press 'RETURN' to continue >

SCHEMA CREATION correctly performed!
SCHEMA USAGE correctly granted!

Loading functions...
SET
CREATE FUNCTION
COMMENT
...
Functions properly uploaded.

Constructing the referential tables...
SET
CREATE SEQUENCE
...
CREATE TABLE will create implicit sequence "xrefdbparent_xrefdbcode_seq" for
"serial" column "xrefdbparent.xrefdbcode"
CREATE TABLE / PRIMARY KEY will create implicit index "xrefdb_pkey" for table
"xrefdb"
CREATE TABLE / UNIQUE will create implicit index "xrefdb_xrefdbname_key" for
table "xrefdb"
NOTICE: merging column "xrefdbcode" with inherited definition
CREATE INDEX
CREATE TABLE
COMMENT
...
Database tables structure properly built.

Adding userstamp and update columns on each table...
NOTICE: merging definition of column "userstamp" for child "xrefdb"
...

Setting up the log (backup) part...
Log (backup) setting properly built.

Loading triggers...
SET
CREATE FUNCTION
COMMENT
CREATE TRIGGER
COMMENT
...
Triggers properly uploaded.

** Loading your DATA into the referential tables... **
INFO: vacuuming "core.tissuesp"
INFO: "tissuesp": found 1148 removable, 1148 nonremovable row versions in 27
pages
INFO: "tissuesp": moved 1120 row versions, truncated 27 to 14 pages
INFO: index "tissuesp_pkey" now contains 1148 row versions in 15 pages
-- TissueSP table is being treated...
-- TissueSP table has been filled in
...

Writing the general database related data to the appropriate table...
Loading done.

Uploading functions to update/alter some internal data related to external
ones...
SET
CREATE FUNCTION
COMMENT
...
Internal data update functions properly integrated (not yet performed).

Loading full entry view functions and tables (materialized views)...
SET

AAppppeennddiixx VVII.. TThhee iinnssttaallllaattiioonn pprroocceessss

 XLV

CREATE FUNCTION
COMMENT
...
Full entry views functions and tables properly loaded.

Update Internal Data And Construct VIEWS:
NOTICE: Entry construction in progress...
NOTICE: Analyzing tables...
NOTICE: CREATE TABLE / UNIQUE will create implicit index
"buffer_make2db_reunit_refs_referenceid_key" for table
"buffer_make2db_reunit_refs"
...
NOTICE: ...entry P00816 is processed
NOTICE: ...entry P09394 is processed
...
NOTICE: Full Entries Table has been constructed/updated!

NOTICE: Protein list in progress...
NOTICE: Protein Lists are being now processed for each Map. Please wait!...
NOTICE: ... Protein lists for the different maps are still in progress...
NOTICE: ... FIGURE1 is being processed
...
NOTICE: Data Updates Performed With Success!
Database Internal Data Updated and Views Constructed!

Performing database displayed statistics...
Database statistics performed!

Session information inserted into the 'Make2DDBTool' table.

Updating entry views for version update...
NOTICE: Entry construction in progress...
NOTICE: ...entry P00816 is processed
...
Database Conversion has been properly performed.

SCHEMA public revoked from PUBLIC.
granting 'select2d' SELECT rights on common.Database
...

Copying indexes to public schema...
creating index (CREATE UNIQUE INDEX release_pkey ON release USING btree
(releasenum, subrelease))
...

Export To Public Data:
NOTICE: Entry construction in progress...
NOTICE: Analyzing tables...
NOTICE: ...entry P00816 is processed
...
NOTICE: Full Entries Table has been constructed/updated!
NOTICE: Protein Lists are being now processed for each Map. Please wait!...
NOTICE: ... FIGURE1 is being processed
...
NOTICE: Data Updates Performed With Success!
Database Public Export Performed With Success!

Analyzing Database to ensure optimal performance. Please, be patient as this
may take some time...
Analyze performed with success!

Database Installed!

